메뉴 건너뛰기




Volumn 55, Issue 2, 2013, Pages 141-155

Efficient approximate k-fold and leave-one-out cross-validation for ridge regression

Author keywords

Approximation method; Cross validation; Matrix Inversion Lemma; Ridge regression; Survival analysis

Indexed keywords

APPROXIMATION THEORY;

EID: 84875002620     PISSN: 03233847     EISSN: 15214036     Source Type: Journal    
DOI: 10.1002/bimj.201200088     Document Type: Article
Times cited : (79)

References (30)
  • 1
    • 0016029778 scopus 로고
    • The relationship between variable selection and data agumentation and a method for prediction
    • Allen, D. (1974). The relationship between variable selection and data agumentation and a method for prediction. Technometrics 16, 125-127.
    • (1974) Technometrics , vol.16 , pp. 125-127
    • Allen, D.1
  • 2
    • 77956649096 scopus 로고    scopus 로고
    • A survey of cross-validation procedures for model selection
    • Arlot, S. and Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics Surveys 4, 40-79.
    • (2010) Statistics Surveys , vol.4 , pp. 40-79
    • Arlot, S.1    Celisse, A.2
  • 3
    • 0001028358 scopus 로고
    • An inverse matrix adjustment arising in discriminant analysis
    • Bartlett, M. (1951). An inverse matrix adjustment arising in discriminant analysis. Annals of Mathematical Statistics 22, 107-111.
    • (1951) Annals of Mathematical Statistics , vol.22 , pp. 107-111
    • Bartlett, M.1
  • 5
    • 8444241860 scopus 로고    scopus 로고
    • Fast exact leave-one-out cross-validation of sparse least-squares support vector machines
    • Cawley, G. and Talbot, N. (2004). Fast exact leave-one-out cross-validation of sparse least-squares support vector machines. Neural Networks 17, 1467-1475.
    • (2004) Neural Networks , vol.17 , pp. 1467-1475
    • Cawley, G.1    Talbot, N.2
  • 9
    • 32044449925 scopus 로고
    • Generalized cross-validation as a method for choosing a good ridge parameter
    • Golub, G., Heath, M. and Wahba, G. (1979). Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21, 215-223.
    • (1979) Technometrics , vol.21 , pp. 215-223
    • Golub, G.1    Heath, M.2    Wahba, G.3
  • 10
    • 21444446838 scopus 로고    scopus 로고
    • Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data
    • Gui, J. and Li, H. (2005). Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data. Bioinformatics 21, 3001-3008.
    • (2005) Bioinformatics , vol.21 , pp. 3001-3008
    • Gui, J.1    Li, H.2
  • 11
    • 0024682770 scopus 로고
    • Updating the inverse of a matrix
    • Hager, W. (1989). Updating the inverse of a matrix. SIAM Review 31, 221-239.
    • (1989) SIAM Review , vol.31 , pp. 221-239
    • Hager, W.1
  • 12
    • 52949124120 scopus 로고    scopus 로고
    • A comparative study of survival models for breast cancer prognostication based on microarray data: does a single gene beat them all?
    • Haibe-Kains, B., Desmedt, C., Sotiriou, C., and Bontempi, G. (2008). A comparative study of survival models for breast cancer prognostication based on microarray data: does a single gene beat them all? Bioinformatics 24, 2200-2208.
    • (2008) Bioinformatics , vol.24 , pp. 2200-2208
    • Haibe-Kains, B.1    Desmedt, C.2    Sotiriou, C.3    Bontempi, G.4
  • 13
    • 0036968865 scopus 로고    scopus 로고
    • Penalized partial likelihood regression for right-censored data with bootstrap selection of the penalty parameter
    • Huang, J. and Harrington, D. (2002). Penalized partial likelihood regression for right-censored data with bootstrap selection of the penalty parameter. Biometrics 58, 781-791.
    • (2002) Biometrics , vol.58 , pp. 781-791
    • Huang, J.1    Harrington, D.2
  • 17
    • 34547863496 scopus 로고    scopus 로고
    • Assessment of survival prediction models based on microarray data
    • Schumacher, M., Binder, H. and Gerds, T. (2007). Assessment of survival prediction models based on microarray data. Bioinformatics 23, 1768-1774.
    • (2007) Bioinformatics , vol.23 , pp. 1768-1774
    • Schumacher, M.1    Binder, H.2    Gerds, T.3
  • 18
    • 0000905617 scopus 로고
    • Adjustment of an inverse matrix corresponding to a change in one element of a given matrix
    • Sherman, J. and Morrison, W. (1950). Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Annals of Mathematical Statistics 21, 124-127.
    • (1950) Annals of Mathematical Statistics , vol.21 , pp. 124-127
    • Sherman, J.1    Morrison, W.2
  • 20
    • 53649102854 scopus 로고    scopus 로고
    • Optimizing the efficiency of cross-validation in linear discriminant analysis through selective use of the Sherman-Morrison-Woodbury inversion formula
    • Tapp, H. and Kemsley, E. (2008). Optimizing the efficiency of cross-validation in linear discriminant analysis through selective use of the Sherman-Morrison-Woodbury inversion formula. Journal of Chemometrics 22, 419-421.
    • (2008) Journal of Chemometrics , vol.22 , pp. 419-421
    • Tapp, H.1    Kemsley, E.2
  • 21
    • 70449671769 scopus 로고    scopus 로고
    • Penalized maximum likelihood principle for choosing ridge parameter
    • Tran, M. (2009). Penalized maximum likelihood principle for choosing ridge parameter. Communications in Statistics-Simulation and Computation 38, 1610-1624.
    • (2009) Communications in Statistics-Simulation and Computation , vol.38 , pp. 1610-1624
    • Tran, M.1
  • 29
    • 0003742929 scopus 로고
    • Memorandum Report 42, Statistical Research Group Princeton, Princeton University, Princeton, New Jersey
    • Woodbury, M. (1950). Inverting modified matrices. Memorandum Report 42, Statistical Research Group Princeton, Princeton University, Princeton, New Jersey.
    • (1950) Inverting modified matrices
    • Woodbury, M.1
  • 30
    • 21144472438 scopus 로고
    • Model selection via multifold cross validation
    • Zhang, P. (1993). Model selection via multifold cross validation. The Annals of Statistics 21, 299-313.
    • (1993) The Annals of Statistics , vol.21 , pp. 299-313
    • Zhang, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.