메뉴 건너뛰기




Volumn 27, Issue 1, 2013, Pages

A discretization method based on maximizing the area under receiver operating characteristic curve

Author keywords

area under ROC curve; Data mining; discretization

Indexed keywords

AREA UNDER ROC CURVE (AUC); DISCRETIZATION METHOD; DISCRETIZATIONS; MULTI-CLASS CLASSIFICATION; REAL-WORLD DATASETS; RECEIVER OPERATING CHARACTERISTIC CURVES; RECEIVER OPERATING CHARACTERISTICS CURVES (ROC); SUPERVISED DISCRETIZATION;

EID: 84874804088     PISSN: 02180014     EISSN: None     Source Type: Journal    
DOI: 10.1142/S021800141350002X     Document Type: Article
Times cited : (15)

References (39)
  • 2
    • 36948999941 scopus 로고    scopus 로고
    • University of California, School of Information and Computer Science, Irvine, CA
    • A. Asuncion and D. J. Newman, UCI Machine Learning Repository, University of California, School of Information and Computer Science, Irvine, CA (2007), http://www.ics. uci.edu/-mlearn/MLRepository.html.
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2
  • 3
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • A. P. Bradley, The use of the area under the ROC curve in the evaluation of machine learning algorithms, Pattern Recogn. 30(7) (1997) 1145-1159.
    • (1997) Pattern Recogn. , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 4
    • 37749034335 scopus 로고
    • On changing continuous attributes into ordered discrete attributes
    • (Springer-Verlag, Berlin
    • J. Catlett, On changing continuous attributes into ordered discrete attributes, in Proc. Fifth European Working Session on Learning (Springer-Verlag, Berlin, 1991), pp. 164-177.
    • (1991) Proc. Fifth European Working Session on Learning , pp. 164-177
    • Catlett, J.1
  • 6
    • 0026406067 scopus 로고
    • Determination of quantization intervals in rule based model for dynamic systems
    • Man, and Cybernetics, Charlottesvile, Virginia
    • C. C. Chan, C. Batur and A. Srinivasan, Determination of quantization intervals in rule based model for dynamic systems, in Proc. IEEE Conf. Systems, Man, and Cybernetics, Charlottesvile, Virginia (1991), pp. 1719-1723.
    • (1991) Proc. IEEE Conf. Systems , pp. 1719-1723
    • Chan, C.C.1    Batur, C.2    Srinivasan, A.3
  • 7
    • 85139983802 scopus 로고
    • Supervised and unsupervised discretization of continuous features
    • eds. A. Prieditis and S. Russell (Morgan Kaufmann, San Francisco, CA,)
    • J. Dougherty, R. Kohavi and M. Sahami, Supervised and unsupervised discretization of continuous features, in Proceedings of the Twelfth International Conference on Machine Learning, eds. A. Prieditis and S. Russell (Morgan Kaufmann, San Francisco, CA, 1995), pp. 194-202.
    • (1995) Proceedings of the Twelfth International Conference on Machine Learning , pp. 194-202
    • Dougherty, J.1    Kohavi, R.2    Sahami, M.3
  • 8
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • T. Fawcett, An introduction to ROC analysis, Pattern Recogn. Lett. 27 (2006) 861-874.
    • (2006) Pattern Recogn. Lett. , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 9
    • 0003024008 scopus 로고
    • On the handling of continuous-valued attributes in decision tree generation
    • U. Fayyad and K. Irani, On the handling of continuous-valued attributes in decision tree generation, Mach. Learn. 8 (1992) 87-102.
    • (1992) Mach. Learn. , vol.8 , pp. 87-102
    • Fayyad, U.1    Irani, K.2
  • 10
    • 84874613998 scopus 로고    scopus 로고
    • A survey of discretization techniques: Taxonomy and empirical analysis in supervised learning
    • in press, doi: 10.1109/TKDE..35
    • S. Garcia, J. Luengo, J. Saez, V. Lopez and F. Herrera, A survey of discretization techniques: Taxonomy and empirical analysis in supervised learning, IEEE Trans. Knowl. Data Eng., in press, doi: 10.1109/TKDE.2012.35.
    • (2012) IEEE Trans. Knowl. Data Eng
    • Garcia, S.1    Luengo, J.2    Saez, J.3    Lopez, V.4    Herrera, F.5
  • 12
    • 76749092270 scopus 로고    scopus 로고
    • The WEKA data mining software: An update
    • M. Hall et al., The WEKA data mining software: An update, SIGKDD Explorations 11(1) (2009) 10-18.
    • (2009) SIGKDD Explorations , vol.11 , Issue.1 , pp. 10-18
    • Hall, M.1
  • 13
    • 0003562954 scopus 로고    scopus 로고
    • A simple generalization of the area under the ROC curve to multiple class classication problems
    • D. J. Hand and R. J. Till, A simple generalization of the area under the ROC curve to multiple class classication problems, Mach. Learn. 45(2) (2001) 171-186.
    • (2001) Mach. Learn. , vol.45 , Issue.2 , pp. 171-186
    • Hand, D.J.1    Till, R.J.2
  • 14
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • J. A. Hanley and B. J. McNeil, The meaning and use of the area under a receiver operating characteristic (ROC) curve, Radiology 143 (1982) 29-36.
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 16
    • 0027580356 scopus 로고
    • Very simple classication rules perform well on most commonly used datasets
    • R. C. Holte, Very simple classication rules perform well on most commonly used datasets, Mach. Learn. 11 (1993) 63-90.
    • (1993) Mach. Learn. , vol.11 , pp. 63-90
    • Holte, R.C.1
  • 17
  • 25
    • 85101511266 scopus 로고    scopus 로고
    • Analysis and visualization of classier performance: Comparison under imprecise class and cost distributions
    • (AAAI Press, Menlo Park, CA
    • F. Provost and T. Fawcett, Analysis and visualization of classier performance: Comparison under imprecise class and cost distributions, in Proc. Third Intl. Conf. on Knowledge Discovery and Data Mining (KDD-97) (AAAI Press, Menlo Park, CA, 1997), pp. 43-48.
    • (1997) Proc. Third Intl. Conf. on Knowledge Discovery and Data Mining (KDD-97) , pp. 43-48
    • Provost, F.1    Fawcett, T.2
  • 26
    • 0035283313 scopus 로고    scopus 로고
    • Robust classication for imprecise environments
    • F. Provost and T. Fawcett, Robust classication for imprecise environments, Mach. Learn. 42(3) (2001) 203-231.
    • (2001) Mach. Learn. , vol.42 , Issue.3 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 27
    • 0002900357 scopus 로고    scopus 로고
    • The case against accuracy estimation for comparing induction algorithms
    • (Morgan Kaufmann
    • F. Provost, T. Fawcett and R. Kohavi, The case against accuracy estimation for comparing induction algorithms, in Proc. Fifteenth Int. Conf. Machine Learning (Morgan Kaufmann, 1998), pp. 445-453.
    • (1998) Proc. Fifteenth Int. Conf. Machine Learning , pp. 445-453
    • Provost, F.1    Fawcett, T.2    Kohavi, R.3
  • 28
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J. R. Quinlan, Induction of decision trees, Mach. Learn. 1 (1986) 81-106.
    • (1986) Mach. Learn. , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 31
    • 85152631406 scopus 로고
    • Signal detection theory: Valuable tools for evaluating inductive learning
    • Morgan Kaufmann, San Mateo, CA,)
    • K. A. Spackman, Signal detection theory: Valuable tools for evaluating inductive learning, in Proc. Sixth Int. Workshop on Machine Learning (Morgan Kaufmann, San Mateo, CA, 1989), pp. 160-163.
    • (1989) Proc. Sixth Int. Workshop on Machine Learning , pp. 160-163
    • Spackman, K.A.1
  • 34
    • 79952944972 scopus 로고    scopus 로고
    • Concurrent discretization of multiple attributes
    • K. Wang and B. Liu, Concurrent discretization of multiple attributes, Pacic Rim Int. Conf. AI (1998), pp. 250-259.
    • (1998) Pacic Rim Int. Conf. AI , pp. 250-259
    • Wang, K.1    Liu, B.2
  • 35
    • 14844351034 scopus 로고    scopus 로고
    • Not so Naive Bayes: Aggregating one-dependence estimators
    • G. Webb, J. Boughton and Z. Wang, Not so Naive Bayes: Aggregating one-dependence estimators, J. Mach. Learn. 58(1) (2005) 5-24.
    • (2005) J. Mach. Learn. , vol.58 , Issue.1 , pp. 5-24
    • Webb, G.1    Boughton, J.2    Wang, Z.3
  • 36
    • 84857039718 scopus 로고    scopus 로고
    • A hybrid discretization method for naïve Bayesian classiers
    • T. T. Wong, A hybrid discretization method for naïve Bayesian classiers, Pattern Recogn. 45(6) (2012) 2321-2325.
    • (2012) Pattern Recogn. , vol.45 , Issue.6 , pp. 2321-2325
    • Wong, T.T.1
  • 37
    • 58149195307 scopus 로고    scopus 로고
    • Discretization for naive-Bayes learning: Managing discretization bias and variance
    • Y. Yang and G. Webb, Discretization for naive-Bayes learning: Managing discretization bias and variance, Mach. Learn. 74(1) (2009) 39-74.
    • (2009) Mach. Learn. , vol.74 , Issue.1 , pp. 39-74
    • Yang, Y.1    Webb, G.2
  • 39
    • 0027457620 scopus 로고
    • Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine
    • M. H. Zweig and G. Campbell, Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine, Clin. Chem. 39(8) (1993) 561-577.
    • (1993) Clin. Chem. , vol.39 , Issue.8 , pp. 561-577
    • Zweig, M.H.1    Campbell, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.