메뉴 건너뛰기




Volumn 45, Issue 6, 2012, Pages 2321-2325

A hybrid discretization method for naïve Bayesian classifiers

Author keywords

Hybrid discretization; Na ve Bayesian classifier; Nonparametric measure

Indexed keywords

BAYESIAN CLASSIFIER; CONTINUOUS ATTRIBUTE; DATA SETS; DISCRETE ATTRIBUTES; DISCRETIZATION METHOD; DISCRETIZATIONS; HYBRID METHOD; NON-PARAMETRIC; PREDICTION ACCURACY;

EID: 84857039718     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2011.12.014     Document Type: Article
Times cited : (38)

References (17)
  • 5
    • 0345306663 scopus 로고    scopus 로고
    • Implications of the Dirichlet assumption for discretization of continuous attributes in naïve Bayesian classifiers
    • C.N. Hsu, H.J. Huang, and T.T. Wong Implications of the Dirichlet assumption for discretization of continuous attributes in naïve Bayesian classifiers Machine Learning 53 2003 235 263
    • (2003) Machine Learning , vol.53 , pp. 235-263
    • Hsu, C.N.1    Huang, H.J.2    Wong, T.T.3
  • 6
    • 58149195307 scopus 로고    scopus 로고
    • Discretization for naïve Bayes learning: Managing discretization bias and variance
    • Y. Yang, and G.I. Webb Discretization for naïve Bayes learning: managing discretization bias and variance Machine Learning 74 2009 39 74
    • (2009) Machine Learning , vol.74 , pp. 39-74
    • Yang, Y.1    Webb, G.I.2
  • 7
    • 79952955344 scopus 로고    scopus 로고
    • Discretization as the enabling technique for the naive Bayes and semi-naive Bayes-based classification
    • M.J. Mizianty, L.A. Kurgan, and M.R. Ogiela Discretization as the enabling technique for the naive Bayes and semi-naive Bayes-based classification Knowledge Engineering Review 25 2010 421 449
    • (2010) Knowledge Engineering Review , vol.25 , pp. 421-449
    • Mizianty, M.J.1    Kurgan, L.A.2    Ogiela, M.R.3
  • 8
    • 79956106290 scopus 로고    scopus 로고
    • Handling numeric attributes when comparing Bayesian network classifiers: Does the discretization method matter?
    • M.J. Flores, J.A. Gamez, and A.M. Martinez Handling numeric attributes when comparing Bayesian network classifiers: does the discretization method matter? Applied Intelligence 34 2011 372 385
    • (2011) Applied Intelligence , vol.34 , pp. 372-385
    • Flores, M.J.1    Gamez, J.A.2    Martinez, A.M.3
  • 9
    • 0031269184 scopus 로고    scopus 로고
    • On the Optimality of the Simple Bayesian Classifier under Zero-One Loss
    • P. Domingos, and M. Plazzani On the optimality of the simple Bayesian classifier under zero one loss Machine Learning 29 1997 103 130 (Pubitemid 127510035)
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 12
    • 60849091358 scopus 로고    scopus 로고
    • Alternative prior assumptions for improving the performance of naive Bayesian classifiers
    • T.T. Wong Alternative prior assumptions for improving the performance of naive Bayesian classifiers Data Mining and Knowledge Discovery 18 2009 183 213
    • (2009) Data Mining and Knowledge Discovery , vol.18 , pp. 183-213
    • Wong, T.T.1
  • 13
    • 78651346026 scopus 로고    scopus 로고
    • Individual attribute prior setting methods for naïve Bayesian classifiers
    • T.T. Wong, and L.H. Chang Individual attribute prior setting methods for naïve Bayesian classifiers Pattern Recognition 44 2011 1041 1047
    • (2011) Pattern Recognition , vol.44 , pp. 1041-1047
    • Wong, T.T.1    Chang, L.H.2
  • 17
    • 36948999941 scopus 로고    scopus 로고
    • University of California, School of Information and Computer Science Irvine, CA
    • A. Asuncion, and D.J. Newman UCI machine learning repository 2007 University of California, School of Information and Computer Science Irvine, CA
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.