-
1
-
-
85139983802
-
Supervised and unsupervised discretization of continuous features
-
San Francisco, CA: Morgan Kaufmann
-
J. Dougherty, R. Kohavi, M. Sahami, Supervised and unsupervised discretization of continuous features. Proceedings of the 12th International Conference on Machine Learning, San Francisco, CA: Morgan Kaufmann, 1995, pp. 194202.
-
(1995)
Proceedings of the 12th International Conference on Machine Learning
, pp. 194202
-
-
Dougherty, J.1
Kohavi, R.2
Sahami, M.3
-
2
-
-
85119615481
-
Error-based and entropy-based discretization of continuous features
-
Portland, OR
-
R. Kohavi, M. Sahami, Error-based and entropy-based discretization of continuous features. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, 1996, pp. 114119.
-
(1996)
Proceedings of the Second International Conference on Knowledge Discovery and Data Mining
, pp. 114119
-
-
Kohavi, R.1
Sahami, M.2
-
4
-
-
0002593344
-
Multi-interval discretization of continuous valued attributes for classification learning
-
Chamberry, France
-
U.M. Fayyad, K.B. Irani, Multi-interval discretization of continuous valued attributes for classification learning. Proceedings of the 13th International Joint Conference on Artificial Intelligence, Chamberry, France, 1993, pp. 10221027.
-
(1993)
Proceedings of the 13th International Joint Conference on Artificial Intelligence
, pp. 10221027
-
-
Fayyad, U.M.1
Irani, K.B.2
-
5
-
-
0345306663
-
Implications of the Dirichlet assumption for discretization of continuous attributes in naïve Bayesian classifiers
-
C.N. Hsu, H.J. Huang, and T.T. Wong Implications of the Dirichlet assumption for discretization of continuous attributes in naïve Bayesian classifiers Machine Learning 53 2003 235 263
-
(2003)
Machine Learning
, vol.53
, pp. 235-263
-
-
Hsu, C.N.1
Huang, H.J.2
Wong, T.T.3
-
6
-
-
58149195307
-
Discretization for naïve Bayes learning: Managing discretization bias and variance
-
Y. Yang, and G.I. Webb Discretization for naïve Bayes learning: managing discretization bias and variance Machine Learning 74 2009 39 74
-
(2009)
Machine Learning
, vol.74
, pp. 39-74
-
-
Yang, Y.1
Webb, G.I.2
-
7
-
-
79952955344
-
Discretization as the enabling technique for the naive Bayes and semi-naive Bayes-based classification
-
M.J. Mizianty, L.A. Kurgan, and M.R. Ogiela Discretization as the enabling technique for the naive Bayes and semi-naive Bayes-based classification Knowledge Engineering Review 25 2010 421 449
-
(2010)
Knowledge Engineering Review
, vol.25
, pp. 421-449
-
-
Mizianty, M.J.1
Kurgan, L.A.2
Ogiela, M.R.3
-
8
-
-
79956106290
-
Handling numeric attributes when comparing Bayesian network classifiers: Does the discretization method matter?
-
M.J. Flores, J.A. Gamez, and A.M. Martinez Handling numeric attributes when comparing Bayesian network classifiers: does the discretization method matter? Applied Intelligence 34 2011 372 385
-
(2011)
Applied Intelligence
, vol.34
, pp. 372-385
-
-
Flores, M.J.1
Gamez, J.A.2
Martinez, A.M.3
-
9
-
-
0031269184
-
On the Optimality of the Simple Bayesian Classifier under Zero-One Loss
-
P. Domingos, and M. Plazzani On the optimality of the simple Bayesian classifier under zero one loss Machine Learning 29 1997 103 130 (Pubitemid 127510035)
-
(1997)
Machine Learning
, vol.29
, Issue.2-3
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.2
-
12
-
-
60849091358
-
Alternative prior assumptions for improving the performance of naive Bayesian classifiers
-
T.T. Wong Alternative prior assumptions for improving the performance of naive Bayesian classifiers Data Mining and Knowledge Discovery 18 2009 183 213
-
(2009)
Data Mining and Knowledge Discovery
, vol.18
, pp. 183-213
-
-
Wong, T.T.1
-
13
-
-
78651346026
-
Individual attribute prior setting methods for naïve Bayesian classifiers
-
T.T. Wong, and L.H. Chang Individual attribute prior setting methods for naïve Bayesian classifiers Pattern Recognition 44 2011 1041 1047
-
(2011)
Pattern Recognition
, vol.44
, pp. 1041-1047
-
-
Wong, T.T.1
Chang, L.H.2
-
17
-
-
36948999941
-
-
University of California, School of Information and Computer Science Irvine, CA
-
A. Asuncion, and D.J. Newman UCI machine learning repository 2007 University of California, School of Information and Computer Science Irvine, CA
-
(2007)
UCI Machine Learning Repository
-
-
Asuncion, A.1
Newman, D.J.2
|