메뉴 건너뛰기




Volumn 9, Issue 2, 2013, Pages

A Retrotransposon Insertion in the 5′ Regulatory Domain of Ptf1a Results in Ectopic Gene Expression and Multiple Congenital Defects in Danforth's Short Tail Mouse

Author keywords

[No Author keywords available]

Indexed keywords

TRANSCRIPTION FACTOR;

EID: 84874780737     PISSN: 15537390     EISSN: 15537404     Source Type: Journal    
DOI: 10.1371/journal.pgen.1003206     Document Type: Article
Times cited : (16)

References (51)
  • 1
    • 78650206677 scopus 로고    scopus 로고
    • Updated National Birth Prevalence estimates for selected birth defects in the United States, 2004-2006
    • Parker SE, Mai CT, Canfield MA, Rickard R, Wang Y, et al. (2010) Updated National Birth Prevalence estimates for selected birth defects in the United States, 2004-2006. Birth Defects Res A Clin Mol Teratol 88: 1008-1016.
    • (2010) Birth Defects Res A Clin Mol Teratol , vol.88 , pp. 1008-1016
    • Parker, S.E.1    Mai, C.T.2    Canfield, M.A.3    Rickard, R.4    Wang, Y.5
  • 2
    • 38849143911 scopus 로고    scopus 로고
    • Population-based birth defects surveillance data from selected states, 2000-2004
    • Population-based birth defects surveillance data from selected states, 2000-2004. Birth Defects Res A Clin Mol Teratol 79: 874-942.
    • Birth Defects Res A Clin Mol Teratol , vol.79 , pp. 874-942
  • 3
    • 65649144240 scopus 로고    scopus 로고
    • Recognition of caudal regression syndrome
    • Boulas MM, (2009) Recognition of caudal regression syndrome. Adv Neonatal Care 9: 61-69 quiz 70-61.
    • (2009) Adv Neonatal Care , vol.9 , pp. 61-69
    • Boulas, M.M.1
  • 5
    • 17344363829 scopus 로고    scopus 로고
    • A homeobox gene, HLXB9, is the major locus for dominantly inherited sacral agenesis
    • Ross AJ, Ruiz-Perez V, Wang Y, Hagan DM, Scherer S, et al. (1998) A homeobox gene, HLXB9, is the major locus for dominantly inherited sacral agenesis. Nat Genet 20: 358-361.
    • (1998) Nat Genet , vol.20 , pp. 358-361
    • Ross, A.J.1    Ruiz-Perez, V.2    Wang, Y.3    Hagan, D.M.4    Scherer, S.5
  • 7
    • 34548787844 scopus 로고    scopus 로고
    • Renal abnormalities and their developmental origin
    • Schedl A, (2007) Renal abnormalities and their developmental origin. Nat Rev Genet 8: 791-802.
    • (2007) Nat Rev Genet , vol.8 , pp. 791-802
    • Schedl, A.1
  • 8
    • 33749241883 scopus 로고    scopus 로고
    • Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study
    • Weber S, Moriniere V, Knuppel T, Charbit M, Dusek J, et al. (2006) Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study. J Am Soc Nephrol 17: 2864-2870.
    • (2006) J Am Soc Nephrol , vol.17 , pp. 2864-2870
    • Weber, S.1    Moriniere, V.2    Knuppel, T.3    Charbit, M.4    Dusek, J.5
  • 9
    • 33645454942 scopus 로고    scopus 로고
    • Renal phenotypes related to hepatocyte nuclear factor-1beta (TCF2) mutations in a pediatric cohort
    • Ulinski T, Lescure S, Beaufils S, Guigonis V, Decramer S, et al. (2006) Renal phenotypes related to hepatocyte nuclear factor-1beta (TCF2) mutations in a pediatric cohort. J Am Soc Nephrol 17: 497-503.
    • (2006) J Am Soc Nephrol , vol.17 , pp. 497-503
    • Ulinski, T.1    Lescure, S.2    Beaufils, S.3    Guigonis, V.4    Decramer, S.5
  • 10
    • 79959953210 scopus 로고    scopus 로고
    • HNF1B and PAX2 mutations are a common cause of renal hypodysplasia in the CKiD cohort
    • Thomas R, Sanna-Cherchi S, Warady BA, Furth SL, Kaskel FJ, et al. (2011) HNF1B and PAX2 mutations are a common cause of renal hypodysplasia in the CKiD cohort. Pediatr Nephrol 26: 897-903.
    • (2011) Pediatr Nephrol , vol.26 , pp. 897-903
    • Thomas, R.1    Sanna-Cherchi, S.2    Warady, B.A.3    Furth, S.L.4    Kaskel, F.J.5
  • 11
    • 0004330255 scopus 로고
    • Developmental Anomalies in a Special Strain of Mice
    • Danforth CH, (1930) Developmental Anomalies in a Special Strain of Mice. Amer Jour Anat 45: 275-287.
    • (1930) Amer Jour Anat , vol.45 , pp. 275-287
    • Danforth, C.H.1
  • 12
    • 0000496537 scopus 로고
    • A New Mutation in the Mouse: Affecting Spinal Column and Urogenital System J Heredity
    • Dunn LC, Gluecksohn-Schoenheimer S, Bryson V, (1940) A New Mutation in the Mouse: Affecting Spinal Column and Urogenital System J Heredity. 31: 343-348.
    • (1940) , vol.31 , pp. 343-348
    • Dunn, L.C.1    Gluecksohn-Schoenheimer, S.2    Bryson, V.3
  • 13
    • 0006740941 scopus 로고
    • The Morphological Manifestations of a Dominant Mutation in Mice Affecting Tail and Urogenital System
    • Gluecksohn-Schoenheimer S, (1943) The Morphological Manifestations of a Dominant Mutation in Mice Affecting Tail and Urogenital System. Genetics 28: 341-348.
    • (1943) Genetics , vol.28 , pp. 341-348
    • Gluecksohn-Schoenheimer, S.1
  • 14
    • 0040548750 scopus 로고
    • The Embryonic Development of Mutants of the Sd-Strain in Mice
    • Gluecksohn-Schoenheimer S, (1945) The Embryonic Development of Mutants of the Sd-Strain in Mice. Genetics 30: 29-38.
    • (1945) Genetics , vol.30 , pp. 29-38
    • Gluecksohn-Schoenheimer, S.1
  • 15
    • 0043154950 scopus 로고
    • Genetical studies on the skeleton of the mouse. XXII. The development of Danforth's short-tail
    • Gruneberg H, (1958) Genetical studies on the skeleton of the mouse. XXII. The development of Danforth's short-tail. J Embryol Exp Morphol 6: 124-148.
    • (1958) J Embryol Exp Morphol , vol.6 , pp. 124-148
    • Gruneberg, H.1
  • 16
    • 0032533318 scopus 로고    scopus 로고
    • Apoptosis of epaxial myotome in Danforth's short-tail (Sd) mice in somites that form following notochord degeneration
    • Asakura A, Tapscott SJ, (1998) Apoptosis of epaxial myotome in Danforth's short-tail (Sd) mice in somites that form following notochord degeneration. Dev Biol 203: 276-289.
    • (1998) Dev Biol , vol.203 , pp. 276-289
    • Asakura, A.1    Tapscott, S.J.2
  • 17
    • 0030817265 scopus 로고    scopus 로고
    • The Danforth's short tail mutation acts cell autonomously in notochord cells and ventral hindgut endoderm
    • Maatman R, Zachgo J, Gossler A, (1997) The Danforth's short tail mutation acts cell autonomously in notochord cells and ventral hindgut endoderm. Development 124: 4019-4028.
    • (1997) Development , vol.124 , pp. 4019-4028
    • Maatman, R.1    Zachgo, J.2    Gossler, A.3
  • 18
    • 77951206973 scopus 로고    scopus 로고
    • Midline signaling regulates kidney positioning but not nephrogenesis through Shh
    • Tripathi P, Guo Q, Wang Y, Coussens M, Liapis H, et al. (2010) Midline signaling regulates kidney positioning but not nephrogenesis through Shh. Dev Biol 340: 518-527.
    • (2010) Dev Biol , vol.340 , pp. 518-527
    • Tripathi, P.1    Guo, Q.2    Wang, Y.3    Coussens, M.4    Liapis, H.5
  • 19
    • 0030894414 scopus 로고    scopus 로고
    • Mapping in the region of Danforth's short tail and the localization of tail length modifiers
    • Alfred JB, Rance K, Taylor BA, Phillips SJ, Abbott CM, et al. (1997) Mapping in the region of Danforth's short tail and the localization of tail length modifiers. Genome Res 7: 108-117.
    • (1997) Genome Res , vol.7 , pp. 108-117
    • Alfred, J.B.1    Rance, K.2    Taylor, B.A.3    Phillips, S.J.4    Abbott, C.M.5
  • 20
    • 33645757337 scopus 로고    scopus 로고
    • Retroviral elements and their hosts: insertional mutagenesis in the mouse germ line
    • doi: 10.1371/journal.pgen.0020002
    • Maksakova IA, Romanish MT, Gagnier L, Dunn CA, van de Lagemaat LN, et al. (2006) Retroviral elements and their hosts: insertional mutagenesis in the mouse germ line. PLoS Genet 2: e2 doi:10.1371/journal.pgen.0020002.
    • (2006) PLoS Genet , vol.2
    • Maksakova, I.A.1    Romanish, M.T.2    Gagnier, L.3    Dunn, C.A.4    van de Lagemaat, L.N.5
  • 21
    • 84862203271 scopus 로고    scopus 로고
    • The genomic landscape shaped by selection on transposable elements across 18 mouse strains
    • Nellaker C, Keane TM, Yalcin B, Wong K, Agam A, et al. (2012) The genomic landscape shaped by selection on transposable elements across 18 mouse strains. Genome Biol 13: R45.
    • (2012) Genome Biol , vol.13
    • Nellaker, C.1    Keane, T.M.2    Yalcin, B.3    Wong, K.4    Agam, A.5
  • 22
    • 0037040583 scopus 로고    scopus 로고
    • Purkinje cell degeneration (pcd) phenotypes caused by mutations in the axotomy-induced gene, Nna1
    • Fernandez-Gonzalez A, La Spada AR, Treadaway J, Higdon JC, Harris BS, et al. (2002) Purkinje cell degeneration (pcd) phenotypes caused by mutations in the axotomy-induced gene, Nna1. Science 295: 1904-1906.
    • (2002) Science , vol.295 , pp. 1904-1906
    • Fernandez-Gonzalez, A.1    La Spada, A.R.2    Treadaway, J.3    Higdon, J.C.4    Harris, B.S.5
  • 23
    • 0029094912 scopus 로고
    • Retinal degeneration slow (rds) in mouse results from simple insertion of a t haplotype-specific element into protein-coding exon II
    • Ma J, Norton JC, Allen AC, Burns JB, Hasel KW, et al. (1995) Retinal degeneration slow (rds) in mouse results from simple insertion of a t haplotype-specific element into protein-coding exon II. Genomics 28: 212-219.
    • (1995) Genomics , vol.28 , pp. 212-219
    • Ma, J.1    Norton, J.C.2    Allen, A.C.3    Burns, J.B.4    Hasel, K.W.5
  • 24
    • 58549093915 scopus 로고    scopus 로고
    • Developmental biology of the pancreas: a comprehensive review
    • Gittes GK, (2009) Developmental biology of the pancreas: a comprehensive review. Dev Biol 326: 4-35.
    • (2009) Dev Biol , vol.326 , pp. 4-35
    • Gittes, G.K.1
  • 25
    • 50249106419 scopus 로고    scopus 로고
    • Transcriptional autoregulation controls pancreatic Ptf1a expression during development and adulthood
    • Masui T, Swift GH, Hale MA, Meredith DM, Johnson JE, et al. (2008) Transcriptional autoregulation controls pancreatic Ptf1a expression during development and adulthood. Mol Cell Biol 28: 5458-5468.
    • (2008) Mol Cell Biol , vol.28 , pp. 5458-5468
    • Masui, T.1    Swift, G.H.2    Hale, M.A.3    Meredith, D.M.4    Johnson, J.E.5
  • 26
    • 70349094112 scopus 로고    scopus 로고
    • Multiple transcriptional mechanisms control Ptf1a levels during neural development including autoregulation by the PTF1-J complex
    • Meredith DM, Masui T, Swift GH, MacDonald RJ, Johnson JE, (2009) Multiple transcriptional mechanisms control Ptf1a levels during neural development including autoregulation by the PTF1-J complex. J Neurosci 29: 11139-11148.
    • (2009) J Neurosci , vol.29 , pp. 11139-11148
    • Meredith, D.M.1    Masui, T.2    Swift, G.H.3    MacDonald, R.J.4    Johnson, J.E.5
  • 27
    • 0035046997 scopus 로고    scopus 로고
    • p48 subunit of mouse PTF1 binds to RBP-Jkappa/CBF-1, the intracellular mediator of Notch signalling, and is expressed in the neural tube of early stage embryos
    • Obata J, Yano M, Mimura H, Goto T, Nakayama R, et al. (2001) p48 subunit of mouse PTF1 binds to RBP-Jkappa/CBF-1, the intracellular mediator of Notch signalling, and is expressed in the neural tube of early stage embryos. Genes to cells: devoted to molecular & cellular mechanisms 6: 345-360.
    • (2001) Genes to Cells: Devoted to Molecular & Cellular Mechanisms , vol.6 , pp. 345-360
    • Obata, J.1    Yano, M.2    Mimura, H.3    Goto, T.4    Nakayama, R.5
  • 28
    • 0036730427 scopus 로고    scopus 로고
    • The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors
    • Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald RJ, et al. (2002) The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nature genetics 32: 128-134.
    • (2002) Nature Genetics , vol.32 , pp. 128-134
    • Kawaguchi, Y.1    Cooper, B.2    Gannon, M.3    Ray, M.4    MacDonald, R.J.5
  • 29
    • 84857846185 scopus 로고    scopus 로고
    • RNA profiling and chromatin immunoprecipitation-sequencing reveal that PTF1a stabilizes pancreas progenitor identity via the control of MNX1/HLXB9 and a network of other transcription factors
    • Thompson N, Gesina E, Scheinert P, Bucher P, Grapin-Botton A, (2012) RNA profiling and chromatin immunoprecipitation-sequencing reveal that PTF1a stabilizes pancreas progenitor identity via the control of MNX1/HLXB9 and a network of other transcription factors. Molecular and cellular biology 32: 1189-1199.
    • (2012) Molecular and Cellular Biology , vol.32 , pp. 1189-1199
    • Thompson, N.1    Gesina, E.2    Scheinert, P.3    Bucher, P.4    Grapin-Botton, A.5
  • 30
    • 69049083510 scopus 로고    scopus 로고
    • Neurog2 is a direct downstream target of the Ptf1a-Rbpj transcription complex in dorsal spinal cord
    • Henke RM, Savage TK, Meredith DM, Glasgow SM, Hori K, et al. (2009) Neurog2 is a direct downstream target of the Ptf1a-Rbpj transcription complex in dorsal spinal cord. Development 136: 2945-2954.
    • (2009) Development , vol.136 , pp. 2945-2954
    • Henke, R.M.1    Savage, T.K.2    Meredith, D.M.3    Glasgow, S.M.4    Hori, K.5
  • 31
    • 38349060863 scopus 로고    scopus 로고
    • A nonclassical bHLH Rbpj transcription factor complex is required for specification of GABAergic neurons independent of Notch signaling
    • Hori K, Cholewa-Waclaw J, Nakada Y, Glasgow SM, Masui T, et al. (2008) A nonclassical bHLH Rbpj transcription factor complex is required for specification of GABAergic neurons independent of Notch signaling. Genes Dev 22: 166-178.
    • (2008) Genes Dev , vol.22 , pp. 166-178
    • Hori, K.1    Cholewa-Waclaw, J.2    Nakada, Y.3    Glasgow, S.M.4    Masui, T.5
  • 32
    • 29144516650 scopus 로고    scopus 로고
    • Ptf1a determines GABAergic over glutamatergic neuronal cell fate in the spinal cord dorsal horn
    • Glasgow SM, Henke RM, Macdonald RJ, Wright CV, Johnson JE, (2005) Ptf1a determines GABAergic over glutamatergic neuronal cell fate in the spinal cord dorsal horn. Development 132: 5461-5469.
    • (2005) Development , vol.132 , pp. 5461-5469
    • Glasgow, S.M.1    Henke, R.M.2    Macdonald, R.J.3    Wright, C.V.4    Johnson, J.E.5
  • 33
    • 0035046997 scopus 로고    scopus 로고
    • p48 subunit of mouse PTF1 binds to RBP-Jkappa/CBF-1, the intracellular mediator of Notch signalling, and is expressed in the neural tube of early stage embryos
    • Obata J, Yano M, Mimura H, Goto T, Nakayama R, et al. (2001) p48 subunit of mouse PTF1 binds to RBP-Jkappa/CBF-1, the intracellular mediator of Notch signalling, and is expressed in the neural tube of early stage embryos. Genes Cells 6: 345-360.
    • (2001) Genes Cells , vol.6 , pp. 345-360
    • Obata, J.1    Yano, M.2    Mimura, H.3    Goto, T.4    Nakayama, R.5
  • 34
    • 0024746213 scopus 로고
    • The cell-specific transcription factor PTF1 contains two different subunits that interact with the DNA
    • Roux E, Strubin M, Hagenbuchle O, Wellauer PK, (1989) The cell-specific transcription factor PTF1 contains two different subunits that interact with the DNA. Genes Dev 3: 1613-1624.
    • (1989) Genes Dev , vol.3 , pp. 1613-1624
    • Roux, E.1    Strubin, M.2    Hagenbuchle, O.3    Wellauer, P.K.4
  • 35
    • 0036730427 scopus 로고    scopus 로고
    • The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors
    • Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald RJ, et al. (2002) The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet 32: 128-134.
    • (2002) Nat Genet , vol.32 , pp. 128-134
    • Kawaguchi, Y.1    Cooper, B.2    Gannon, M.3    Ray, M.4    MacDonald, R.J.5
  • 36
    • 35348985382 scopus 로고    scopus 로고
    • Early pancreatic development requires the vertebrate Suppressor of Hairless (RBPJ) in the PTF1 bHLH complex
    • Masui T, Long Q, Beres TM, Magnuson MA, MacDonald RJ, (2007) Early pancreatic development requires the vertebrate Suppressor of Hairless (RBPJ) in the PTF1 bHLH complex. Genes Dev 21: 2629-2643.
    • (2007) Genes Dev , vol.21 , pp. 2629-2643
    • Masui, T.1    Long, Q.2    Beres, T.M.3    Magnuson, M.A.4    MacDonald, R.J.5
  • 37
    • 33645236232 scopus 로고    scopus 로고
    • PTF1 is an organ-specific and Notch-independent basic helix-loop-helix complex containing the mammalian Suppressor of Hairless (RBP-J) or its paralogue, RBP-L
    • Beres TM, Masui T, Swift GH, Shi L, Henke RM, et al. (2006) PTF1 is an organ-specific and Notch-independent basic helix-loop-helix complex containing the mammalian Suppressor of Hairless (RBP-J) or its paralogue, RBP-L. Mol Cell Biol 26: 117-130.
    • (2006) Mol Cell Biol , vol.26 , pp. 117-130
    • Beres, T.M.1    Masui, T.2    Swift, G.H.3    Shi, L.4    Henke, R.M.5
  • 38
    • 33845897880 scopus 로고    scopus 로고
    • Ptf1a determines horizontal and amacrine cell fates during mouse retinal development
    • Fujitani Y, Fujitani S, Luo H, Qiu F, Burlison J, et al. (2006) Ptf1a determines horizontal and amacrine cell fates during mouse retinal development. Development 133: 4439-4450.
    • (2006) Development , vol.133 , pp. 4439-4450
    • Fujitani, Y.1    Fujitani, S.2    Luo, H.3    Qiu, F.4    Burlison, J.5
  • 40
    • 33745684608 scopus 로고    scopus 로고
    • Ascl1 and Gsh1/2 control inhibitory and excitatory cell fate in spinal sensory interneurons
    • Mizuguchi R, Kriks S, Cordes R, Gossler A, Ma Q, et al. (2006) Ascl1 and Gsh1/2 control inhibitory and excitatory cell fate in spinal sensory interneurons. Nat Neurosci 9: 770-778.
    • (2006) Nat Neurosci , vol.9 , pp. 770-778
    • Mizuguchi, R.1    Kriks, S.2    Cordes, R.3    Gossler, A.4    Ma, Q.5
  • 41
    • 22544464692 scopus 로고    scopus 로고
    • Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum
    • Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, et al. (2005) Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron 47: 201-213.
    • (2005) Neuron , vol.47 , pp. 201-213
    • Hoshino, M.1    Nakamura, S.2    Mori, K.3    Kawauchi, T.4    Terao, M.5
  • 42
    • 34247644810 scopus 로고    scopus 로고
    • Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression
    • Pascual M, Abasolo I, Mingorance-Le Meur A, Martinez A, Del Rio JA, et al. (2007) Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression. Proc Natl Acad Sci U S A 104: 5193-5198.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 5193-5198
    • Pascual, M.1    Abasolo, I.2    Mingorance-Le Meur, A.3    Martinez, A.4    Del Rio, J.A.5
  • 43
    • 33745214464 scopus 로고    scopus 로고
    • Ectopic pancreas formation in Hes1 -knockout mice reveals plasticity of endodermal progenitors of the gut, bile duct, and pancreas
    • Fukuda A, Kawaguchi Y, Furuyama K, Kodama S, Horiguchi M, et al. (2006) Ectopic pancreas formation in Hes1-knockout mice reveals plasticity of endodermal progenitors of the gut, bile duct, and pancreas. J Clin Invest 116: 1484-1493.
    • (2006) J Clin Invest , vol.116 , pp. 1484-1493
    • Fukuda, A.1    Kawaguchi, Y.2    Furuyama, K.3    Kodama, S.4    Horiguchi, M.5
  • 44
    • 0031870637 scopus 로고    scopus 로고
    • Genetic interactions suggest that Danforth's short tail (Sd) is a gain-of-function mutation
    • Zachgo J, Korn R, Gossler A, (1998) Genetic interactions suggest that Danforth's short tail (Sd) is a gain-of-function mutation. Dev Genet 23: 86-96.
    • (1998) Dev Genet , vol.23 , pp. 86-96
    • Zachgo, J.1    Korn, R.2    Gossler, A.3
  • 45
    • 11144339384 scopus 로고    scopus 로고
    • Long-range control of gene expression: emerging mechanisms and disruption in disease
    • Kleinjan DA, van Heyningen V, (2005) Long-range control of gene expression: emerging mechanisms and disruption in disease. Am J Hum Genet 76: 8-32.
    • (2005) Am J Hum Genet , vol.76 , pp. 8-32
    • Kleinjan, D.A.1    van Heyningen, V.2
  • 46
    • 20044366725 scopus 로고    scopus 로고
    • Highly conserved non-coding sequences are associated with vertebrate development
    • doi: 10.1371/journal.pbio.0030007
    • Woolfe A, Goodson M, Goode DK, Snell P, McEwen GK, et al. (2005) Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biol 3: e7 doi:10.1371/journal.pbio.0030007.
    • (2005) PLoS Biol , vol.3
    • Woolfe, A.1    Goodson, M.2    Goode, D.K.3    Snell, P.4    McEwen, G.K.5
  • 47
    • 39049141215 scopus 로고    scopus 로고
    • Organization of conserved elements near key developmental regulators in vertebrate genomes
    • Woolfe A, Elgar G, (2008) Organization of conserved elements near key developmental regulators in vertebrate genomes. Adv Genet 61: 307-338.
    • (2008) Adv Genet , vol.61 , pp. 307-338
    • Woolfe, A.1    Elgar, G.2
  • 49
    • 80052851950 scopus 로고    scopus 로고
    • Mouse genomic variation and its effect on phenotypes and gene regulation
    • Keane TM, Goodstadt L, Danecek P, White MA, Wong K, et al. (2011) Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477: 289-294.
    • (2011) Nature , vol.477 , pp. 289-294
    • Keane, T.M.1    Goodstadt, L.2    Danecek, P.3    White, M.A.4    Wong, K.5
  • 50
    • 33750831582 scopus 로고    scopus 로고
    • Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor
    • Kohany O, Gentles AJ, Hankus L, Jurka J, (2006) Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinformatics 7: 474.
    • (2006) BMC Bioinformatics , vol.7 , pp. 474
    • Kohany, O.1    Gentles, A.J.2    Hankus, L.3    Jurka, J.4
  • 51
    • 0027445532 scopus 로고
    • Detection of messenger RNA by in situ hybridization to tissue sections and whole mounts
    • Wilkinson DG, Nieto MA, (1993) Detection of messenger RNA by in situ hybridization to tissue sections and whole mounts. Methods Enzymol 225: 361-373.
    • (1993) Methods Enzymol , vol.225 , pp. 361-373
    • Wilkinson, D.G.1    Nieto, M.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.