메뉴 건너뛰기




Volumn 79, Issue 5, 2013, Pages 1500-1507

Single amino acid substitutions in HXT2.4 from Scheffersomyces stipitis lead to improved cellobiose fermentation by engineered Saccharomyces cerevisiae

Author keywords

[No Author keywords available]

Indexed keywords

AMINO ACID SUBSTITUTION; CELLOBIOSE; CELLODEXTRIN TRANSPORTERS; CHARGED AMINO ACIDS; ENGINEERED STRAINS; EXPRESSION LEVELS; GLUCOSIDASE; HEXOSE TRANSPORTERS; KINETIC PROPERTIES; NEGATIVELY CHARGED; NEUROSPORA CRASSA; POSITIVELY CHARGED; S.CEREVISIAE; SCHEFFERSOMYCES STIPITIS; WILD TYPES;

EID: 84874707022     PISSN: 00992240     EISSN: 10985336     Source Type: Journal    
DOI: 10.1128/AEM.03253-12     Document Type: Article
Times cited : (34)

References (37)
  • 1
    • 33947157565 scopus 로고    scopus 로고
    • What is (and is not) vital to advancing cellulosic ethanol
    • Wyman CE. 2007. What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol. 25:153-157.
    • (2007) Trends Biotechnol , vol.25 , pp. 153-157
    • Wyman, C.E.1
  • 3
    • 33846950348 scopus 로고    scopus 로고
    • Challenges in engineering microbes for biofuels production
    • Stephanopoulos G. 2007. Challenges in engineering microbes for biofuels production. Science 315:801- 804.
    • (2007) Science , vol.315 , pp. 801-804
    • Stephanopoulos, G.1
  • 7
    • 82955168964 scopus 로고    scopus 로고
    • Cofermentation of cellobiose and galactose by an engineered Saccharomyces cerevisiae strain
    • Ha SJ, Wei Q, Kim SR, Galazka JM, Cate JH, Jin YS. 2011. Cofermentation of cellobiose and galactose by an engineered Saccharomyces cerevisiae strain. Appl. Environ. Microbiol. 77:5822-5825.
    • (2011) Appl. Environ. Microbiol. , vol.77 , pp. 5822-5825
    • Ha, S.J.1    Wei, Q.2    Kim, S.R.3    Galazka, J.M.4    Cate, J.H.5    Jin, Y.S.6
  • 8
    • 77955553357 scopus 로고    scopus 로고
    • Co- fermentation of cellobiose and xylose using beta-glucosidase displaying diploid industrial yeast strain OC-2
    • Saitoh S, Hasunuma T, Tanaka T, Kondo A. 2010. Co-fermentation of cellobiose and xylose using beta-glucosidase displaying diploid industrial yeast strain OC-2. Appl. Microbiol. Biotechnol. 87:1975-1982.
    • (2010) Appl. Microbiol. Biotechnol. , vol.87 , pp. 1975-1982
    • Saitoh, S.1    Hasunuma, T.2    Tanaka, T.3    Kondo, A.4
  • 9
    • 27544459042 scopus 로고    scopus 로고
    • Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains
    • van Rooyen R, Hahn-Hägerdal B, La Grange DC, van Zyl WH. 2005. Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains. J. Biotechnol. 120:284 -295.
    • (2005) J. Biotechnol. , vol.120 , pp. 284-295
    • van Rooyen, R.1    Hahn-Hägerdal, B.2    La Grange, D.C.3    van Zyl, W.H.4
  • 10
    • 84862812426 scopus 로고    scopus 로고
    • Simultaneous cofermentation of mixed sugars: a promising strategy for producing cellulosic ethanol
    • Kim SR, Ha SJ, Wei N, Oh EJ, Jin YS. 2012. Simultaneous cofermentation of mixed sugars: a promising strategy for producing cellulosic ethanol. Trends Biotechnol. 30:274 -282.
    • (2012) Trends Biotechnol , vol.30 , pp. 274-282
    • Kim, S.R.1    Ha, S.J.2    Wei, N.3    Oh, E.J.4    Jin, Y.S.5
  • 11
    • 0033769895 scopus 로고    scopus 로고
    • Ethanol and thermotolerance in the bioconversion of xylose by yeasts
    • Jeffries TW, Jin YS. 2000. Ethanol and thermotolerance in the bioconversion of xylose by yeasts. Adv. Appl. Microbiol. 47:221-268.
    • (2000) Adv. Appl. Microbiol. , vol.47 , pp. 221-268
    • Jeffries, T.W.1    Jin, Y.S.2
  • 12
    • 1242264261 scopus 로고    scopus 로고
    • Metabolic engineering for improved fermentation of pentoses by yeasts
    • Jeffries TW, Jin YS. 2004. Metabolic engineering for improved fermentation of pentoses by yeasts. Appl. Microbiol. Biotechnol. 63:495-509.
    • (2004) Appl. Microbiol. Biotechnol. , vol.63 , pp. 495-509
    • Jeffries, T.W.1    Jin, Y.S.2
  • 14
    • 0033941131 scopus 로고    scopus 로고
    • Characterization of two-substrate fermentation processes for xylitol production using recombinant Saccharo-myces cerevisiae containing xylose reductase gene
    • Lee WJ, Ryu YW, Seo JH. 2000. Characterization of two-substrate fermentation processes for xylitol production using recombinant Saccharo-myces cerevisiae containing xylose reductase gene. Process Biochem. 35: 1199-1203.
    • (2000) Process Biochem , vol.35 , pp. 1199-1203
    • Lee, W.J.1    Ryu, Y.W.2    Seo, J.H.3
  • 16
    • 79955553841 scopus 로고    scopus 로고
    • Co-expression of a cellobiose phosphorylase and lactose permease enables intracellular cellobiose utilisation by Saccharomyces cerevisiae
    • Sadie C, Rose SH, den Haan R, van Zyl WH. 2011. Co-expression of a cellobiose phosphorylase and lactose permease enables intracellular cellobiose utilisation by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 90:1373-1380.
    • (2011) Appl. Microbiol. Biotechnol. , vol.90 , pp. 1373-1380
    • Sadie, C.1    Rose, S.H.2    den Haan, R.3    van Zyl, W.H.4
  • 17
    • 34247580875 scopus 로고    scopus 로고
    • Yeast genetic strain and plasmid collections
    • Entian KD, Kotter P. 2007. Yeast genetic strain and plasmid collections. Methods Microbiol. 36:629-666.
    • (2007) Methods Microbiol , vol.36 , pp. 629-666
    • Entian, K.D.1    Kotter, P.2
  • 18
    • 0026548118 scopus 로고
    • A dominant mutation that alters the regulation of INO1 expression in Saccharomyces cerevisiae
    • Hosaka K, Nikawa J, Kodaki T, Yamashita S. 1992. A dominant mutation that alters the regulation of INO1 expression in Saccharomyces cerevisiae. J. Biochem. 111:352-358.
    • (1992) J. Biochem. , vol.111 , pp. 352-358
    • Hosaka, K.1    Nikawa, J.2    Kodaki, T.3    Yamashita, S.4
  • 19
    • 34247842718 scopus 로고    scopus 로고
    • Genetic selection for a highly functional cysteine-less membrane protein using site saturation mutagenesis
    • Arendt CS, Ri K, Yates PA, Ullman B. 2007. Genetic selection for a highly functional cysteine-less membrane protein using site saturation mutagenesis. Anal. Biochem. 365:185-193.
    • (2007) Anal. Biochem. , vol.365 , pp. 185-193
    • Arendt, C.S.1    Ri, K.2    Yates, P.A.3    Ullman, B.4
  • 20
    • 63849246525 scopus 로고    scopus 로고
    • Protein structure prediction on the Web: a case study using the Phyre server
    • Kelley LA, Sternberg MJ. 2009. Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4:363-371.
    • (2009) Nat. Protoc. , vol.4 , pp. 363-371
    • Kelley, L.A.1    Sternberg, M.J.2
  • 21
    • 0022390906 scopus 로고
    • A general method for saturation mutagenesis of cloned DNA fragments
    • Myers RM, Lerman LS, Maniatis T. 1985. A general method for saturation mutagenesis of cloned DNA fragments. Science 229:242-247.
    • (1985) Science , vol.229 , pp. 242-247
    • Myers, R.M.1    Lerman, L.S.2    Maniatis, T.3
  • 22
    • 77957892899 scopus 로고    scopus 로고
    • Discovery and characterization of novel D-xylose-specific transporters from Neurospora crassa and Pichia stipitis
    • Du J, Li S, Zhao H. 2010. Discovery and characterization of novel D-xylose-specific transporters from Neurospora crassa and Pichia stipitis. Mol. Biosyst. 6:2150 -2156.
    • (2010) Mol. Biosyst. , vol.6 , pp. 2150-2156
    • Du, J.1    Li, S.2    Zhao, H.3
  • 23
    • 0013540899 scopus 로고
    • Fermentation of xylose and cellobiose by Pichia stipitis and Brettanomyces clausenii
    • Parekh SR, Parekh RS, Wayman M. 1988. Fermentation of xylose and cellobiose by Pichia stipitis and Brettanomyces clausenii. Appl. Biochem. Biotechnol. 18:325-338.
    • (1988) Appl. Biochem. Biotechnol. , vol.18 , pp. 325-338
    • Parekh, S.R.1    Parekh, R.S.2    Wayman, M.3
  • 24
    • 0344869562 scopus 로고
    • Fermentation of cellobiose and wood sugars to ethanol by Candida shehatae and Pichia stipitis
    • Parekh S, Wayman M. 1986. Fermentation of cellobiose and wood sugars to ethanol by Candida shehatae and Pichia stipitis. Biotechnol. Lett. 8:597- 600.
    • (1986) Biotechnol. Lett. , vol.8 , pp. 597-600
    • Parekh, S.1    Wayman, M.2
  • 25
    • 68849116035 scopus 로고    scopus 로고
    • Pichia stipitis genomics, transcriptomics, and gene clusters
    • Jeffries TW, Van Vleet JR. 2009. Pichia stipitis genomics, transcriptomics, and gene clusters. FEMS Yeast Res. 9:793- 807.
    • (2009) FEMS Yeast Res , vol.9 , pp. 793-807
    • Jeffries, T.W.1    Van Vleet, J.R.2
  • 26
    • 0033059278 scopus 로고    scopus 로고
    • Evolutionary approaches to protein engineering
    • Steipe B. 1999. Evolutionary approaches to protein engineering. Curr. Top. Microbiol. Immunol. 243:55- 86.
    • (1999) Curr. Top. Microbiol. Immunol. , vol.243 , pp. 55-86
    • Steipe, B.1
  • 27
    • 0035232377 scopus 로고    scopus 로고
    • Evolutionary engineering of industrially important microbial phenotypes
    • Sauer U. 2001. Evolutionary engineering of industrially important microbial phenotypes. Adv. Biochem. Eng. Biotechnol. 73:129 -169.
    • (2001) Adv. Biochem. Eng. Biotechnol. , vol.73 , pp. 129-169
    • Sauer, U.1
  • 28
    • 79955158679 scopus 로고    scopus 로고
    • Evolutionary engineered Saccharomyces cerevisiae wine yeast strains with increased in vivo flux through the pentose phosphate pathway
    • Cadière A, Ortiz-Julien A, Camarasa C, Dequin S. 2011. Evolutionary engineered Saccharomyces cerevisiae wine yeast strains with increased in vivo flux through the pentose phosphate pathway. Metab. Eng. 13:263- 271.
    • (2011) Metab. Eng. , vol.13 , pp. 263-271
    • Cadière, A.1    Ortiz-Julien, A.2    Camarasa, C.3    Dequin, S.4
  • 29
  • 30
  • 31
    • 59949093124 scopus 로고    scopus 로고
    • Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains
    • Wisselink HW, Toirkens MJ, Wu Q, Pronk JT, van Maris AJA. 2009. Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Appl. Environ. Microbiol. 75:907-914.
    • (2009) Appl. Environ. Microbiol. , vol.75 , pp. 907-914
    • Wisselink, H.W.1    Toirkens, M.J.2    Wu, Q.3    Pronk, J.T.4    van Maris, A.J.A.5
  • 32
    • 0037394596 scopus 로고    scopus 로고
    • Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose
    • Sonderegger M, Sauer U. 2003. Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl. Environ. Microbiol. 69:1990 -1998.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 1990-1998
    • Sonderegger, M.1    Sauer, U.2
  • 33
    • 0031402418 scopus 로고    scopus 로고
    • Enzymatic synthesis of disaccharides using Agrobacterium sp. β-glucosidase.
    • Prade H, Mackenzie LF, Withers SG. 1997. Enzymatic synthesis of disaccharides using Agrobacterium sp. ß-glucosidase. Carbohydr. Res. 305:371-381.
    • (1997) Carbohydr. Res. , vol.305 , pp. 371-381
    • Prade, H.1    Mackenzie, L.F.2    Withers, S.G.3
  • 34
    • 0034943702 scopus 로고    scopus 로고
    • Rapid screening of the aglycone specificity of glycosidases: applications to enzymatic synthesis of oligosaccharides
    • Blanchard JE, Withers SG. 2001. Rapid screening of the aglycone specificity of glycosidases: applications to enzymatic synthesis of oligosaccharides. Chem. Biol. 8:627- 633.
    • (2001) Chem. Biol. , vol.8 , pp. 627-633
    • Blanchard, J.E.1    Withers, S.G.2
  • 36
    • 77956223286 scopus 로고    scopus 로고
    • Identification of a key residue determining substrate affinity in the yeast glucose transporter Hxt7: a twodimensional comprehensive study
    • Kasahara T, Kasahara M. 2010. Identification of a key residue determining substrate affinity in the yeast glucose transporter Hxt7: a twodimensional comprehensive study. J. Biol. Chem. 285:26263-26268.
    • (2010) J. Biol. Chem. , vol.285 , pp. 26263-26268
    • Kasahara, T.1    Kasahara, M.2
  • 37
    • 84862800120 scopus 로고    scopus 로고
    • A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae
    • Young EM, Comer AD, Huang H, Alper HS. 2012. A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae. Metab. Eng. 14:401- 411.
    • (2012) Metab. Eng. , vol.14 , pp. 401-411
    • Young, E.M.1    Comer, A.D.2    Huang, H.3    Alper, H.S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.