-
1
-
-
84874594227
-
Pancreatic plasticity and reprogramming: Novel directions towards disease therapy
-
Ainscough J, Yamanaka S, Tada T, eds.New York, New York, USA: Humana Press
-
Willet S, Wright C. Pancreatic plasticity and reprogramming: novel directions towards disease therapy. In: Ainscough J, Yamanaka S, Tada T, eds. Nuclear Reprogramming and Stem Cells.New York, New York, USA: Humana Press; 2011;:193-215.
-
(2011)
Nuclear Reprogramming and Stem Cells
, pp. 193-215
-
-
Willet, S.1
Wright, C.2
-
2
-
-
41849151748
-
Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo
-
DOI 10.1038/nbt1393, PII NBT1393
-
Kroon E, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 2008;26(4):443-452. (Pubitemid 351501814)
-
(2008)
Nature Biotechnology
, vol.26
, Issue.4
, pp. 443-452
-
-
Kroon, E.1
Martinson, L.A.2
Kadoya, K.3
Bang, A.G.4
Kelly, O.G.5
Eliazer, S.6
Young, H.7
Richardson, M.8
Smart, N.G.9
Cunningham, J.10
Agulnick, A.D.11
D'Amour, K.A.12
Carpenter, M.K.13
Baetge, E.E.14
-
3
-
-
0038413922
-
NeuroD-betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice
-
DOI 10.1038/nm867
-
Kojima H, et al. NeuroD-βcellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice. Nat Med. 2003;9(5):596-603. (Pubitemid 36597107)
-
(2003)
Nature Medicine
, vol.9
, Issue.5
, pp. 596-603
-
-
Kojima, H.1
Fujimiya, M.2
Matsumura, K.3
Younan, P.4
Imaeda, H.5
Maeda, M.6
Chan, L.7
-
4
-
-
0034068602
-
Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia
-
DOI 10.1038/75050
-
Ferber S, et al. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat Med. 2000;6(5):568-572. (Pubitemid 30305908)
-
(2000)
Nature Medicine
, vol.6
, Issue.5
, pp. 568-572
-
-
Ferber, S.1
Halkin, A.2
Cohen, H.3
Ber, I.4
Einav, Y.5
Goldberg, I.6
Barshack, I.7
Seijffers, R.8
Kopolovic, J.9
Kaiser, N.10
Karasik, A.11
-
5
-
-
84859350525
-
Generation of functional insulin-producing cells in the gut by Foxo1 ablation
-
Talchai C, Xuan S, Kitamura T, DePinho RA, Accili D. Generation of functional insulin-producing cells in the gut by Foxo1 ablation. Nat Genet. 2012;44(4):406-412.
-
(2012)
Nat Genet
, vol.44
, Issue.4
, pp. 406-412
-
-
Talchai, C.1
Xuan, S.2
Kitamura, T.3
Depinho, R.A.4
Accili, D.5
-
6
-
-
53349178722
-
In vivo reprogramming of adult pancreatic exocrine cells to β-cells
-
Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. In vivo reprogramming of adult pancreatic exocrine cells to β-cells. Nature. 2008;455(7213):627-632.
-
(2008)
Nature
, vol.455
, Issue.7213
, pp. 627-632
-
-
Zhou, Q.1
Brown, J.2
Kanarek, A.3
Rajagopal, J.4
Melton, D.A.5
-
7
-
-
77951611220
-
Conversion of adult pancreatic α-cells to β-cells after extreme β-cell loss
-
Thorel F, et al. Conversion of adult pancreatic α-cells to β-cells after extreme β-cell loss. Nature. 2010;464(7292):1149-1154.
-
(2010)
Nature
, vol.464
, Issue.7292
, pp. 1149-1154
-
-
Thorel, F.1
-
8
-
-
68149162957
-
The Ectopic Expression of Pax4 in the mouse pancreas converts progenitor cells into α and subsequently β cells
-
Collombat P, et al. The Ectopic Expression of Pax4 in the mouse pancreas converts progenitor cells into α and subsequently β cells. Cell. 2009;138(3):449-462.
-
(2009)
Cell
, vol.138
, Issue.3
, pp. 449-462
-
-
Collombat, P.1
-
9
-
-
77958099053
-
Pancreatic β-cell neogenesis by direct conversion from mature α-cells
-
Chung CH, Hao E, Piran R, Keinan E, Levine F. Pancreatic β-cell neogenesis by direct conversion from mature α-cells. Stem Cells. 2010;28(9):1630-1638.
-
(2010)
Stem Cells
, vol.28
, Issue.9
, pp. 1630-1638
-
-
Chung, C.H.1
Hao, E.2
Piran, R.3
Keinan, E.4
Levine, F.5
-
10
-
-
0034121735
-
Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages
-
Herrera PL. Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages. Development. 2000;127(11):2317-2322. (Pubitemid 30386571)
-
(2000)
Development
, vol.127
, Issue.11
, pp. 2317-2322
-
-
Herrera, P.L.1
-
11
-
-
77950661065
-
Genome-wide analysis of histone modifications in human pancreatic islets
-
Bhandare R, et al. Genome-wide analysis of histone modifications in human pancreatic islets. Genome Res. 2010;20(4):428-433.
-
(2010)
Genome Res
, vol.20
, Issue.4
, pp. 428-433
-
-
Bhandare, R.1
-
12
-
-
78049446282
-
Global epigenomic analysis of primary human pancreatic islets provides insights into type 2 diabetes susceptibility loci
-
Stitzel ML, et al. Global epigenomic analysis of primary human pancreatic islets provides insights into type 2 diabetes susceptibility loci. Cell Metab. 2010;12(5):443-455.
-
(2010)
Cell Metab
, vol.12
, Issue.5
, pp. 443-455
-
-
Stitzel, M.L.1
-
13
-
-
84878350949
-
Identification and analysis of murine pancreatic islet enhancers
-
[published online ahead of print December 14, 2012], doi: 10.1007/s00125-012-2797-5
-
Tennant BR, et al. Identification and analysis of murine pancreatic islet enhancers [published online ahead of print December 14, 2012]. Diabetologia. doi: 10.1007/s00125-012-2797-5.
-
Diabetologia
-
-
Tennant, B.R.1
-
14
-
-
77952966500
-
Derepression of Polycomb targets during pancreatic organogenesis allows insulin-producing β-cells to adopt a neural gene activity program
-
van Arensbergen J, et al. Derepression of Polycomb targets during pancreatic organogenesis allows insulin-producing β-cells to adopt a neural gene activity program. Genome Res. 2010;20(6):722-732.
-
(2010)
Genome Res
, vol.20
, Issue.6
, pp. 722-732
-
-
Van Arensbergen, J.1
-
15
-
-
84866977211
-
Research resource: RNA-Seq reveals unique features of the pancreatic β-cell transcriptome
-
Ku GM, et al. Research resource: RNA-Seq reveals unique features of the pancreatic β-cell transcriptome. Mol Endocrinol. 2012;26(10):1783-1792.
-
(2012)
Mol Endocrinol
, vol.26
, Issue.10
, pp. 1783-1792
-
-
Ku, G.M.1
-
16
-
-
84874626174
-
Epigenomic plasticity enables human pancreatic α to β cell reprogramming
-
Bramswig NC, et al. Epigenomic plasticity enables human pancreatic α to β cell reprogramming. J Clin Invest. 2013;123(3):1275-1284.
-
(2013)
J Clin Invest
, vol.123
, Issue.3
, pp. 1275-1284
-
-
Bramswig, N.C.1
-
17
-
-
49149100973
-
Isolation of major pancreatic cell types and long-term culture-initiating cells using novel human surface markers
-
Dorrell C, Abraham SL, Lanxon-Cookson KM, Canaday PS, Streeter PR, Grompe M. Isolation of major pancreatic cell types and long-term culture-initiating cells using novel human surface markers. Stem Cell Research. 2008;1(3):183-194.
-
(2008)
Stem Cell Research
, vol.1
, Issue.3
, pp. 183-194
-
-
Dorrell, C.1
Abraham, S.L.2
Lanxon-Cookson, K.M.3
Canaday, P.S.4
Streeter, P.R.5
Grompe, M.6
-
18
-
-
80054682732
-
Transcriptomes of the major human pancreatic cell types
-
Dorrell C, et al. Transcriptomes of the major human pancreatic cell types. Diabetologia. 2011;54(11):2832-2844.
-
(2011)
Diabetologia
, vol.54
, Issue.11
, pp. 2832-2844
-
-
Dorrell, C.1
-
19
-
-
84865790047
-
An integrated encyclopedia of DNA elements in the human genome
-
ENCODE Project Consortiumet al.
-
ENCODE Project Consortiumet al. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57-74.
-
(2012)
Nature
, vol.489
, Issue.7414
, pp. 57-74
-
-
-
20
-
-
33646070846
-
A bivalent chromatin structure marks key developmental genes in embryonic stem cells
-
Bernstein BE, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006;125(2):315-326.
-
(2006)
Cell
, vol.125
, Issue.2
, pp. 315-326
-
-
Bernstein, B.E.1
-
21
-
-
84861982240
-
Bivalent histone modifications in early embryogenesis
-
Vastenhouw NL, Schier AF. Bivalent histone modifications in early embryogenesis. Curr Opin Cell Biol. 2012;24(3):374-386.
-
(2012)
Curr Opin Cell Biol
, vol.24
, Issue.3
, pp. 374-386
-
-
Vastenhouw, N.L.1
Schier, A.F.2
-
22
-
-
34548434716
-
Whole-genome analysis of histone h3 lysine 4 and lysine 27 methylation in human embryonic stem cells
-
DOI 10.1016/j.stem.2007.08.003, PII S1934590907001221
-
Pan G, et al. Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell. 2007;1(3):299-312. (Pubitemid 47355329)
-
(2007)
Cell Stem Cell
, vol.1
, Issue.3
, pp. 299-312
-
-
Pan, G.1
Tian, S.2
Nie, J.3
Yang, C.4
Ruotti, V.5
Wei, H.6
Jonsdottir, G.A.7
Stewart, R.8
Thomson, J.A.9
-
23
-
-
34447098370
-
A chromatin landmark and transcription initiation at most promoters in human cells
-
DOI 10.1016/j.cell.2007.05.042, PII S0092867407006812
-
Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA. A chromatin landmark and transcription initiation at most promoters in human cells. Cell. 2007;130(1):77-88. (Pubitemid 47031323)
-
(2007)
Cell
, vol.130
, Issue.1
, pp. 77-88
-
-
Guenther, M.G.1
Levine, S.S.2
Boyer, L.A.3
Jaenisch, R.4
Young, R.A.5
-
24
-
-
33745868054
-
ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression
-
DOI 10.1038/nature04835, PII NATURE04835
-
Shi X, et al. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature. 2006;442(7098):96-99. (Pubitemid 44064216)
-
(2006)
Nature
, vol.442
, Issue.7098
, pp. 96-99
-
-
Shi, X.1
Hong, T.2
Walter, K.L.3
Ewalt, M.4
Michishita, E.5
Hung, T.6
Carney, D.7
Pena, P.8
Lan, F.9
Kaadige, M.R.10
Lacoste, N.11
Cayrou, C.12
Davrazou, F.13
Saha, A.14
Cairns, B.R.15
Ayer, D.E.16
Kutateladze, T.G.17
Shi, Y.18
Cote, J.19
Chua, K.F.20
Gozani, O.21
more..
-
25
-
-
84859893371
-
Histone methylation: A dynamic mark in health, disease and inheritance
-
Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet. 2012;13(5):343-357.
-
(2012)
Nat Rev Genet
, vol.13
, Issue.5
, pp. 343-357
-
-
Greer, E.L.1
Shi, Y.2
-
26
-
-
79955795581
-
Paused RNA polymerase II as a developmental checkpoint
-
Levine M. Paused RNA polymerase II as a developmental checkpoint. Cell. 2011;145(4):502-511.
-
(2011)
Cell
, vol.145
, Issue.4
, pp. 502-511
-
-
Levine, M.1
-
27
-
-
84867802858
-
Subpopulations of GFP-marked mouse pancreatic β-cells differ in size, granularity, and insulin secretion
-
Katsuta H, et al. Subpopulations of GFP-marked mouse pancreatic β-cells differ in size, granularity, and insulin secretion. Endocrinology. 2012;153(11):5180-5187.
-
(2012)
Endocrinology
, vol.153
, Issue.11
, pp. 5180-5187
-
-
Katsuta, H.1
-
28
-
-
84555196073
-
ChIP and Re-ChIP Assays: Investigating interactions between regulatory proteins histone modifications and the DNA sequences to which they bind
-
Truax AD, Greer SF. ChIP and Re-ChIP assays: investigating interactions between regulatory proteins, histone modifications, and the DNA sequences to which they bind. Methods Mol Biol. 2012;809:175-188.
-
(2012)
Methods Mol Biol.
, vol.809
, pp. 175-188
-
-
Truax, A.D.1
Greer, S.F.2
-
29
-
-
84873702810
-
Dynamic chromatin remodeling mediated by polycomb proteins orchestrates pancreatic differentiation of human embryonic stem cells
-
5909(12)00706-00710
-
Xie R, et al. Dynamic chromatin remodeling mediated by polycomb proteins orchestrates pancreatic differentiation of human embryonic stem cells.. Cell Stem Cell. 2013;pii:S1934. -5909(12)00706-0.
-
(2013)
Cell Stem Cell
-
-
Xie, R.1
-
30
-
-
77951840060
-
α Cell-specific Men1 ablation triggers the transdifferentiation of glucagon-expressing cells and insulinoma development
-
1965.e1958
-
Lu J, et al. α cell-specific Men1 ablation triggers the transdifferentiation of glucagon-expressing cells and insulinoma development. Gastroenterology. 2010;138(5):1954-1965.1965 .e1958.
-
(2010)
Gastroenterology
, vol.138
, Issue.5
, pp. 1954-1965
-
-
Lu, J.1
-
31
-
-
84861587201
-
Genome-wide characterization of menin-dependent H3K4me3 reveals a specific role for menin in the regulation of genes implicated in MEN1-like tumors
-
Agarwal SK, Jothi R. Genome-wide characterization of menin-dependent H3K4me3 reveals a specific role for menin in the regulation of genes implicated in MEN1-like tumors. PLoS One. 2012;7(5):e37952.
-
(2012)
PLoS One
, vol.7
, Issue.5
-
-
Agarwal, S.K.1
Jothi, R.2
-
32
-
-
84874116695
-
Discovery of a chemical probe for the L3MBTL3 methyllysine reader domain
-
[published online ahead of print January 6, 2013], doi: 10.1038/nchembio.1157
-
James LI, et al. Discovery of a chemical probe for the L3MBTL3 methyllysine reader domain [published online ahead of print January 6, 2013]. Nat Chem Biol. doi: 10.1038/nchembio.1157.
-
Nat Chem Biol.
-
-
James, L.I.1
-
33
-
-
77957009475
-
Small-molecule inducers of insulin expression in pancreatic-cells
-
Fomina-Yadlin D, et al. Small-molecule inducers of insulin expression in pancreatic-cells. Proc Natl Acad Sci U S A. 2010;107(34):15099-15104.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, Issue.34
, pp. 15099-15104
-
-
Fomina-Yadlin, D.1
-
34
-
-
73349089955
-
Long-term inhibition of the glucagon receptor with a monoclonal antibody in mice causes sustained improvement in glycemic control, with reversible alpha-cell hyperplasia and hyperglucagonemia
-
Gu W, et al. Long-term inhibition of the glucagon receptor with a monoclonal antibody in mice causes sustained improvement in glycemic control, with reversible alpha-cell hyperplasia and hyperglucagonemia. J Pharmacol Exp Ther. 2009;331(3):871-881.
-
(2009)
J Pharmacol Exp Ther
, vol.331
, Issue.3
, pp. 871-881
-
-
Gu, W.1
-
35
-
-
0037417984
-
Lower blood glucose, hyperglucagonemia, and pancreatic α cell hyperplasia in glucagon receptor knockout mice
-
DOI 10.1073/pnas.0237106100
-
Gelling RW. Lower blood glucose, hyperglucagonemia, and pancreatic α cell hyperplasia in glucagon receptor knockout mice. Proc Natl Acad Sci U S A. 2003;100(3):1438-1443. (Pubitemid 36184020)
-
(2003)
Proceedings of the National Academy of Sciences of the United States of America
, vol.100
, Issue.3
, pp. 1438-1443
-
-
Gelling, R.W.1
Du, X.Q.2
Dichmann, D.S.3
Romer, J.4
Huang, H.5
Cui, L.6
Obici, S.7
Tang, B.8
Holst, J.J.9
Fledelius, C.10
Johansen, P.B.11
Rossetti, L.12
Jelicks, L.A.13
Serup, P.14
Nishimura, E.15
Charron, M.J.16
-
36
-
-
84875478761
-
Liver-specific disruption of the murine glucagon receptor produces α-cell hyperplasia: Evidence for a circulating α-cell growth factor
-
[published online ahead of print November 16, 2012], doi: 10.2337/db11-1605
-
Longuet C, et al. Liver-specific disruption of the murine glucagon receptor produces α-cell hyperplasia: evidence for a circulating α-cell growth factor [published online ahead of print November 16, 2012]. Diabetes. doi: 10.2337/db11-1605 .
-
Diabetes
-
-
Longuet, C.1
|