메뉴 건너뛰기




Volumn 73, Issue , 2013, Pages 53-64

Overview on the developments of microbial fuel cells

Author keywords

Microbial fuel cells; Modelling; Operating conditions; Scale up; Sustainable energy

Indexed keywords

ELECTRICITY PRODUCTION; ENGINEERING ASPECTS; FEED-RATES; IRREVERSIBLE REACTIONS; MICROBIAL FUEL CELLS (MFCS); NATURAL ORGANIC MATTERS; OPERATING CONDITION; ORGANIC LOAD; ORGANIC WASTES; POWER OUT PUT; RECENT PROGRESS; SCALE-UP; SUSTAINABLE ENERGY; TRANSPORT PHENOMENA;

EID: 84874428584     PISSN: 1369703X     EISSN: 1873295X     Source Type: Journal    
DOI: 10.1016/j.bej.2013.01.012     Document Type: Review
Times cited : (328)

References (121)
  • 1
    • 19444367096 scopus 로고    scopus 로고
    • Microbial fuel cells: novel biotechnology for energy generation
    • Rabaey K., Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 2005, 23:291-298.
    • (2005) Trends Biotechnol. , vol.23 , pp. 291-298
    • Rabaey, K.1    Verstraete, W.2
  • 2
    • 58149129484 scopus 로고    scopus 로고
    • Recent developments in microbial fuel cell technologies for sustainable bioenergy
    • Watanabe K. Recent developments in microbial fuel cell technologies for sustainable bioenergy. J. Biosci. Bioeng. 2008, 106:528-536.
    • (2008) J. Biosci. Bioeng. , vol.106 , pp. 528-536
    • Watanabe, K.1
  • 3
    • 33750443594 scopus 로고    scopus 로고
    • Application of bacterial biocathodes in microbial fuel cells
    • He Z., Angenent L.T. Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 2006, 18:2009-2015.
    • (2006) Electroanalysis , vol.18 , pp. 2009-2015
    • He, Z.1    Angenent, L.T.2
  • 5
    • 77957348875 scopus 로고    scopus 로고
    • Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells
    • Huang L., Regan J.M., Quan X. Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresour. Technol. 2011, 102:316-323.
    • (2011) Bioresour. Technol. , vol.102 , pp. 316-323
    • Huang, L.1    Regan, J.M.2    Quan, X.3
  • 6
    • 77957336587 scopus 로고    scopus 로고
    • Recent progress and continuing challenges in bio-fuel cells: Part II. Microbial
    • Osman M.H., Shah A.A., Walsh F.C. Recent progress and continuing challenges in bio-fuel cells: Part II. Microbial. Biosens. Bioelectron. 2010, 26:953-963.
    • (2010) Biosens. Bioelectron. , vol.26 , pp. 953-963
    • Osman, M.H.1    Shah, A.A.2    Walsh, F.C.3
  • 7
    • 77955980404 scopus 로고    scopus 로고
    • Biocatalysts in microbial fuel cells
    • Sharma V., Kundu P.P. Biocatalysts in microbial fuel cells. Enzyme Microb. Technol. 2010, 47:179-188.
    • (2010) Enzyme Microb. Technol. , vol.47 , pp. 179-188
    • Sharma, V.1    Kundu, P.P.2
  • 8
    • 34447285505 scopus 로고    scopus 로고
    • A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy
    • Du Z., Li H., Gu T. A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol. Adv. 2007, 25:464-482.
    • (2007) Biotechnol. Adv. , vol.25 , pp. 464-482
    • Du, Z.1    Li, H.2    Gu, T.3
  • 9
    • 34548017839 scopus 로고    scopus 로고
    • Challenges in microbial fuel cell development and operation
    • Kim B.H., Chang I.S., Gadd G.M. Challenges in microbial fuel cell development and operation. Appl. Microbiol. Biotechnol. 2007, 76:485-494.
    • (2007) Appl. Microbiol. Biotechnol. , vol.76 , pp. 485-494
    • Kim, B.H.1    Chang, I.S.2    Gadd, G.M.3
  • 10
    • 58949088600 scopus 로고    scopus 로고
    • Microbial fuel cells: recent advances, bacterial communities and application beyond electricity generation
    • Kim I.S., Chae K.J., Choi M.J., Verstraete W. Microbial fuel cells: recent advances, bacterial communities and application beyond electricity generation. Environ. Eng. Res. 2008, 13:51-65.
    • (2008) Environ. Eng. Res. , vol.13 , pp. 51-65
    • Kim, I.S.1    Chae, K.J.2    Choi, M.J.3    Verstraete, W.4
  • 11
    • 77957019058 scopus 로고    scopus 로고
    • Sustainable wastewater treatment: how might microbial fuel cells contribute
    • Oh S.T., Kim J.R., Premier G.C., Lee T.H., Kim C., Sloan W.T. Sustainable wastewater treatment: how might microbial fuel cells contribute. Biotechnol. Adv. 2010, 28:871-881.
    • (2010) Biotechnol. Adv. , vol.28 , pp. 871-881
    • Oh, S.T.1    Kim, J.R.2    Premier, G.C.3    Lee, T.H.4    Kim, C.5    Sloan, W.T.6
  • 12
    • 77957901715 scopus 로고    scopus 로고
    • Recent developments in microbial fuel cells: a review
    • Das S., Mangwani N. Recent developments in microbial fuel cells: a review. J. Sci. Ind. Res. 2010, 69:727-731.
    • (2010) J. Sci. Ind. Res. , vol.69 , pp. 727-731
    • Das, S.1    Mangwani, N.2
  • 13
    • 74549132545 scopus 로고    scopus 로고
    • Microbial fuel cells as an alternative energy option
    • Balat M. Microbial fuel cells as an alternative energy option. Energy Sources A 2010, 32:26-35.
    • (2010) Energy Sources A , vol.32 , pp. 26-35
    • Balat, M.1
  • 14
    • 33751004376 scopus 로고    scopus 로고
    • Electricity-producing bacterial communities in microbial fuel cells
    • Logan B.E., Regan J.M. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol. 2006, 14:512-518.
    • (2006) Trends Microbiol. , vol.14 , pp. 512-518
    • Logan, B.E.1    Regan, J.M.2
  • 15
    • 77953160485 scopus 로고    scopus 로고
    • Microbial fuel cells, a current review
    • Franks A.E., Nevin K.P. Microbial fuel cells, a current review. Energies 2010, 3:899-919.
    • (2010) Energies , vol.3 , pp. 899-919
    • Franks, A.E.1    Nevin, K.P.2
  • 18
    • 78651107055 scopus 로고    scopus 로고
    • Microbial fuel cells for energy self-sufficient domestic wastewater treatment-a review and discussion from energetic consideration
    • Lefebvre O., Uzabiaga A., Chang I.S., Kim B.H., Ng H.Y. Microbial fuel cells for energy self-sufficient domestic wastewater treatment-a review and discussion from energetic consideration. Appl. Microbiol. Biotechnol. 2011, 89:259-270.
    • (2011) Appl. Microbiol. Biotechnol. , vol.89 , pp. 259-270
    • Lefebvre, O.1    Uzabiaga, A.2    Chang, I.S.3    Kim, B.H.4    Ng, H.Y.5
  • 20
    • 34447523820 scopus 로고    scopus 로고
    • Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency
    • Schroder U. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys. Chem. Chem. Phys. 2007, 9:2619-2629.
    • (2007) Phys. Chem. Chem. Phys. , vol.9 , pp. 2619-2629
    • Schroder, U.1
  • 22
    • 74549151753 scopus 로고    scopus 로고
    • A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production
    • Pant D., Bogaert G.V., Diels L., Vanbroekhoven K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol. 2010, 101:1533-1543.
    • (2010) Bioresour. Technol. , vol.101 , pp. 1533-1543
    • Pant, D.1    Bogaert, G.V.2    Diels, L.3    Vanbroekhoven, K.4
  • 23
    • 77957338115 scopus 로고    scopus 로고
    • Recent advances in the separators for microbial fuel cells
    • Li W.W., Sheng G.P., Liu X.W., Yu H.Q. Recent advances in the separators for microbial fuel cells. Bioresour. Technol. 2011, 102:244-252.
    • (2011) Bioresour. Technol. , vol.102 , pp. 244-252
    • Li, W.W.1    Sheng, G.P.2    Liu, X.W.3    Yu, H.Q.4
  • 24
    • 80052699260 scopus 로고    scopus 로고
    • Recent progress in electrodes for microbial fuel cells
    • Wei J., Liang P., Huang X. Recent progress in electrodes for microbial fuel cells. Bioresour. Technol. 2011, 102:9335-9344.
    • (2011) Bioresour. Technol. , vol.102 , pp. 9335-9344
    • Wei, J.1    Liang, P.2    Huang, X.3
  • 25
    • 79952280859 scopus 로고    scopus 로고
    • An overview of electrode materials in microbial fuel cells
    • Zhou M., Chi M., Luo J., He H., Jin T. An overview of electrode materials in microbial fuel cells. J. Power Sources 2011, 196:4427-4435.
    • (2011) J. Power Sources , vol.196 , pp. 4427-4435
    • Zhou, M.1    Chi, M.2    Luo, J.3    He, H.4    Jin, T.5
  • 26
    • 58149133820 scopus 로고    scopus 로고
    • Engineering microbial fuel cells: recent patent and new directions
    • Biffinger J.C., Ringeisen B.R. Engineering microbial fuel cells: recent patent and new directions. Recent Patents on Biotechnology 2008, 2:150-155.
    • (2008) Recent Patents on Biotechnology , vol.2 , pp. 150-155
    • Biffinger, J.C.1    Ringeisen, B.R.2
  • 28
    • 55949104194 scopus 로고    scopus 로고
    • Microbial fuel cells based on carbon veil electrodes: stack configuration and scalability
    • Ieropoulos I., Greenman J., Melhuish C. Microbial fuel cells based on carbon veil electrodes: stack configuration and scalability. Int. J. Energy Res. 2008, 32:1228-1240.
    • (2008) Int. J. Energy Res. , vol.32 , pp. 1228-1240
    • Ieropoulos, I.1    Greenman, J.2    Melhuish, C.3
  • 31
    • 76849084828 scopus 로고    scopus 로고
    • Scaling up microbial fuel cells and other bioelectrochemical systems
    • Logan B.E. Scaling up microbial fuel cells and other bioelectrochemical systems. Appl. Microbiol. Biotechnol. 2010, 85:1665-1671.
    • (2010) Appl. Microbiol. Biotechnol. , vol.85 , pp. 1665-1671
    • Logan, B.E.1
  • 32
    • 79551684612 scopus 로고    scopus 로고
    • Increasing power generation for scaling up single-chamber air cathode microbial fuel cells
    • Cheng S., Logan B.E. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells. Bioresour. Technol. 2011, 102:4468-4473.
    • (2011) Bioresour. Technol. , vol.102 , pp. 4468-4473
    • Cheng, S.1    Logan, B.E.2
  • 33
    • 40049088335 scopus 로고    scopus 로고
    • Scale-up of membrane-free single-chamber microbial fuel cells
    • Liu H., Cheng S., Huang L., Logan B.E. Scale-up of membrane-free single-chamber microbial fuel cells. J. Power Sources 2008, 179:274-279.
    • (2008) J. Power Sources , vol.179 , pp. 274-279
    • Liu, H.1    Cheng, S.2    Huang, L.3    Logan, B.E.4
  • 35
    • 65049085916 scopus 로고    scopus 로고
    • Substrate cross-conduction effect on the performance of serially connected microbial fuel cell stack
    • Zhuang L., Zhou S. Substrate cross-conduction effect on the performance of serially connected microbial fuel cell stack. Electrochem. Commun. 2009, 11:937-940.
    • (2009) Electrochem. Commun. , vol.11 , pp. 937-940
    • Zhuang, L.1    Zhou, S.2
  • 36
    • 42549170183 scopus 로고    scopus 로고
    • A novel configuration of microbial fuel cell stack bridged internally through an extra cation exchange membrane
    • Liu Z., Liu J., Zhang S., Su Z. A novel configuration of microbial fuel cell stack bridged internally through an extra cation exchange membrane. Biotechnol. Lett. 2008, 30:1017-1023.
    • (2008) Biotechnol. Lett. , vol.30 , pp. 1017-1023
    • Liu, Z.1    Liu, J.2    Zhang, S.3    Su, Z.4
  • 37
    • 84855356804 scopus 로고    scopus 로고
    • Scalable microbial fuel cell (MFC) stack for continuous real wastewater treatment
    • Zhuang L., Zheng Y., Zhou S., Yuan Y., Yuan H., Chen Y. Scalable microbial fuel cell (MFC) stack for continuous real wastewater treatment. Bioresour. Technol. 2012, 106:82-88.
    • (2012) Bioresour. Technol. , vol.106 , pp. 82-88
    • Zhuang, L.1    Zheng, Y.2    Zhou, S.3    Yuan, Y.4    Yuan, H.5    Chen, Y.6
  • 38
    • 84865567149 scopus 로고    scopus 로고
    • Long-term evaluation of a 10-liter serpentine-type microbial fuel cells stack treating brewery wastewater
    • Zhuang L., Yuan Y., Wang Y., Zhou S. Long-term evaluation of a 10-liter serpentine-type microbial fuel cells stack treating brewery wastewater. Bioresour. Technol. 2012, 123:406-412.
    • (2012) Bioresour. Technol. , vol.123 , pp. 406-412
    • Zhuang, L.1    Yuan, Y.2    Wang, Y.3    Zhou, S.4
  • 39
    • 77649234772 scopus 로고    scopus 로고
    • Improved energy output levels from small-scale microbial fuel cells
    • Ieropoulos I., Greenman J., Melhuish C. Improved energy output levels from small-scale microbial fuel cells. Bioelectrochemistry 2010, 78:44-50.
    • (2010) Bioelectrochemistry , vol.78 , pp. 44-50
    • Ieropoulos, I.1    Greenman, J.2    Melhuish, C.3
  • 40
    • 69349103099 scopus 로고    scopus 로고
    • Granular activated carbon single-chamber microbial fuel cells (GAC-SCMFCs): a design suitable for large-scale wastewater treatment processes
    • Jiang D., Li B. Granular activated carbon single-chamber microbial fuel cells (GAC-SCMFCs): a design suitable for large-scale wastewater treatment processes. Biochem. Eng. J. 2009, 47:31-37.
    • (2009) Biochem. Eng. J. , vol.47 , pp. 31-37
    • Jiang, D.1    Li, B.2
  • 41
    • 77955579002 scopus 로고    scopus 로고
    • Power recovery with multi-anode/cathode microbial fuel cells suitable for future large-scale applications
    • Jiang D., Li X., Raymond D., Mooradain J., Li B. Power recovery with multi-anode/cathode microbial fuel cells suitable for future large-scale applications. Int. J. Hydrogen Energy 2010, 35:8683-8689.
    • (2010) Int. J. Hydrogen Energy , vol.35 , pp. 8683-8689
    • Jiang, D.1    Li, X.2    Raymond, D.3    Mooradain, J.4    Li, B.5
  • 42
    • 34248229805 scopus 로고    scopus 로고
    • Tubular membrane cathodes for scalable power generation in microbial fuel fells
    • Zuo Y., Cheng S., Call D., Logan B. Tubular membrane cathodes for scalable power generation in microbial fuel fells. Environ. Sci. Technol. 2007, 41:3347-3353.
    • (2007) Environ. Sci. Technol. , vol.41 , pp. 3347-3353
    • Zuo, Y.1    Cheng, S.2    Call, D.3    Logan, B.4
  • 43
    • 51949116825 scopus 로고    scopus 로고
    • Ion exchange membrane cathodes for scalable microbial fuel cells
    • Zuo Y., Cheng S., Logan B. Ion exchange membrane cathodes for scalable microbial fuel cells. Environ. Sci. Technol. 2008, 42:6967-6972.
    • (2008) Environ. Sci. Technol. , vol.42 , pp. 6967-6972
    • Zuo, Y.1    Cheng, S.2    Logan, B.3
  • 44
    • 67649338423 scopus 로고    scopus 로고
    • Optimization of a Pt-free cathode suitable for practical applications of microbial fuel cells
    • Lefebvre O., Ooi W.K., Tang Z., Abdullah-Al-Mamun Md., Chua D.H.C., Ng H.Y. Optimization of a Pt-free cathode suitable for practical applications of microbial fuel cells. Bioresour. Technol. 2009, 100:4907-4910.
    • (2009) Bioresour. Technol. , vol.100 , pp. 4907-4910
    • Lefebvre, O.1    Ooi, W.K.2    Tang, Z.3    Abdullah-Al-Mamun, M.4    Chua, D.H.C.5    Ng, H.Y.6
  • 45
    • 67650064598 scopus 로고    scopus 로고
    • Membrane-less cloth cathode assembly (CCA) for scalable microbial fuel cells
    • Zhuang L., Zhoua S., Wang Y., Liu C., Geng S. Membrane-less cloth cathode assembly (CCA) for scalable microbial fuel cells. Biosens. Bioelectron. 2009, 24:3652-3656.
    • (2009) Biosens. Bioelectron. , vol.24 , pp. 3652-3656
    • Zhuang, L.1    Zhoua, S.2    Wang, Y.3    Liu, C.4    Geng, S.5
  • 46
    • 77950915947 scopus 로고    scopus 로고
    • Comparison of membrane- and cloth-cathode assembly for scalable microbial fuel cells: construction, performance and cost
    • Zhuang L., Feng C., Zhoua S., Li Y., Wang Y. Comparison of membrane- and cloth-cathode assembly for scalable microbial fuel cells: construction, performance and cost. Process Biochem. 2010, 45:929-934.
    • (2010) Process Biochem. , vol.45 , pp. 929-934
    • Zhuang, L.1    Feng, C.2    Zhoua, S.3    Li, Y.4    Wang, Y.5
  • 48
    • 84864224064 scopus 로고    scopus 로고
    • Improved performance of CEA microbial fuel cells with increased reactor size
    • Fan Y., Han S.K., Liu H. Improved performance of CEA microbial fuel cells with increased reactor size. Energy Environ. Sci. 2012, 5:8273-8280.
    • (2012) Energy Environ. Sci. , vol.5 , pp. 8273-8280
    • Fan, Y.1    Han, S.K.2    Liu, H.3
  • 50
    • 53649105860 scopus 로고    scopus 로고
    • Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration
    • Jadhav G.S., Ghangrekar M.M. Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresour. Technol. 2009, 100:717-723.
    • (2009) Bioresour. Technol. , vol.100 , pp. 717-723
    • Jadhav, G.S.1    Ghangrekar, M.M.2
  • 51
    • 58549088469 scopus 로고    scopus 로고
    • Effect of anodic pH microenvironment on microbial fuel cell (MFC) performance in concurrence with aerated and ferricyanide catholytes
    • Raghavulu S.V., Mohan S.V., Goud R.K., Sarma P.N. Effect of anodic pH microenvironment on microbial fuel cell (MFC) performance in concurrence with aerated and ferricyanide catholytes. Electrochem. Commun. 2009, 11:371-375.
    • (2009) Electrochem. Commun. , vol.11 , pp. 371-375
    • Raghavulu, S.V.1    Mohan, S.V.2    Goud, R.K.3    Sarma, P.N.4
  • 52
    • 60549096841 scopus 로고    scopus 로고
    • Increased power from a two-chamber microbial fuel cell with a low-pH air-cathode compartment
    • Erable B., Etcheverry L., Bergel A. Increased power from a two-chamber microbial fuel cell with a low-pH air-cathode compartment. Electrochem. Commun. 2009, 11:619-622.
    • (2009) Electrochem. Commun. , vol.11 , pp. 619-622
    • Erable, B.1    Etcheverry, L.2    Bergel, A.3
  • 53
    • 67650263418 scopus 로고    scopus 로고
    • Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH
    • Behera M., Ghangrekar M.M. Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH. Bioresour. Technol. 2009, 100:5114-5121.
    • (2009) Bioresour. Technol. , vol.100 , pp. 5114-5121
    • Behera, M.1    Ghangrekar, M.M.2
  • 54
    • 76049116695 scopus 로고    scopus 로고
    • Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode
    • Zhuang L., Zhou S., Li Y., Yuan Y. Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode. Bioresour. Technol. 2010, 101:3514-3519.
    • (2010) Bioresour. Technol. , vol.101 , pp. 3514-3519
    • Zhuang, L.1    Zhou, S.2    Li, Y.3    Yuan, Y.4
  • 55
    • 79952814680 scopus 로고    scopus 로고
    • The overshoot phenomenon as a function of internal resistance in microbial fuel cells
    • Winfield J., Ieropoulos I., Greenman J., Dennis J. The overshoot phenomenon as a function of internal resistance in microbial fuel cells. Bioelectrochemistry 2011, 81:22-27.
    • (2011) Bioelectrochemistry , vol.81 , pp. 22-27
    • Winfield, J.1    Ieropoulos, I.2    Greenman, J.3    Dennis, J.4
  • 56
    • 54549105196 scopus 로고    scopus 로고
    • Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell
    • He Z., Huang Y., Manohar A.K., Mansfeld F. Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell. Bioelectrochemistry 2008, 74:78-82.
    • (2008) Bioelectrochemistry , vol.74 , pp. 78-82
    • He, Z.1    Huang, Y.2    Manohar, A.K.3    Mansfeld, F.4
  • 57
    • 77956171795 scopus 로고    scopus 로고
    • Effect of pH on nutrient dynamics and electricity production using microbial fuel cells
    • Puig S., Serra M., Coma M., Cabré M., Balaguer M.D., Colprim J. Effect of pH on nutrient dynamics and electricity production using microbial fuel cells. Bioresour. Technol. 2010, 101:9594-9599.
    • (2010) Bioresour. Technol. , vol.101 , pp. 9594-9599
    • Puig, S.1    Serra, M.2    Coma, M.3    Cabré, M.4    Balaguer, M.D.5    Colprim, J.6
  • 58
    • 80051663652 scopus 로고    scopus 로고
    • Influences of initial pH on performance and anodic microbes of fed-batch microbial fuel cells
    • Zhang L., Li C., Ding L., Xu K., Ren H. Influences of initial pH on performance and anodic microbes of fed-batch microbial fuel cells. J. Chem. Technol. Biotechnol. 2011, 86:1226-1232.
    • (2011) J. Chem. Technol. Biotechnol. , vol.86 , pp. 1226-1232
    • Zhang, L.1    Li, C.2    Ding, L.3    Xu, K.4    Ren, H.5
  • 59
    • 79956366439 scopus 로고    scopus 로고
    • Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells
    • Yuan Y., Zhao B., Zhou S., Zhong S., Zhuang L. Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells. Bioresour. Technol. 2011, 102:6887-6891.
    • (2011) Bioresour. Technol. , vol.102 , pp. 6887-6891
    • Yuan, Y.1    Zhao, B.2    Zhou, S.3    Zhong, S.4    Zhuang, L.5
  • 60
    • 80052739603 scopus 로고    scopus 로고
    • Electroactive mixed culture derived biofilms in microbial bioelectrochemical systems: the role of pH on biofilm formation, performance and composition
    • Patil S.A., Harnisch F., Koch C., Hübschmann T., Fetzer I., Carmona-Martínez A.A., Müller S., Schröder U. Electroactive mixed culture derived biofilms in microbial bioelectrochemical systems: the role of pH on biofilm formation, performance and composition. Bioresour. Technol. 2011, 102:6887-6891.
    • (2011) Bioresour. Technol. , vol.102 , pp. 6887-6891
    • Patil, S.A.1    Harnisch, F.2    Koch, C.3    Hübschmann, T.4    Fetzer, I.5    Carmona-Martínez, A.A.6    Müller, S.7    Schröder, U.8
  • 61
    • 80054691404 scopus 로고    scopus 로고
    • Impedance characteristics and polarization behavior of a microbial fuel cell in response to short-term changes in medium pH
    • Jung S., Mench M.M., Regan J.M. Impedance characteristics and polarization behavior of a microbial fuel cell in response to short-term changes in medium pH. Environ. Sci. Technol. 2011, 45:9069-9074.
    • (2011) Environ. Sci. Technol. , vol.45 , pp. 9069-9074
    • Jung, S.1    Mench, M.M.2    Regan, J.M.3
  • 62
    • 80051592257 scopus 로고    scopus 로고
    • Microbial fuel cell of Enterobacter cloacae: effect of anodic pH microenvironment on current, power density, internal resistance and electrochemical losses
    • Nimje V.R., Chen C.Y., Chen C.C., Tsai J.Y., Chen H.R., Huang Y.M., Jean J.S., Chang Y.F., Shih R.C. Microbial fuel cell of Enterobacter cloacae: effect of anodic pH microenvironment on current, power density, internal resistance and electrochemical losses. Int. J. Hydrogen Energy 2011, 36:11093-11101.
    • (2011) Int. J. Hydrogen Energy , vol.36 , pp. 11093-11101
    • Nimje, V.R.1    Chen, C.Y.2    Chen, C.C.3    Tsai, J.Y.4    Chen, H.R.5    Huang, Y.M.6    Jean, J.S.7    Chang, Y.F.8    Shih, R.C.9
  • 63
    • 68349141657 scopus 로고    scopus 로고
    • Behaviour of single chambered mediatorless microbial fuel cell (MFC) at acidophilic, neutral and alkaline microenvironments during chemical wastewater treatment
    • Raghavulu S.V., Mohan S.V., Reddy M.V., Mohanakrishna G., Sarma P.N. Behaviour of single chambered mediatorless microbial fuel cell (MFC) at acidophilic, neutral and alkaline microenvironments during chemical wastewater treatment. Int. J. Hydrogen Energy 2009, 34:7547-7554.
    • (2009) Int. J. Hydrogen Energy , vol.34 , pp. 7547-7554
    • Raghavulu, S.V.1    Mohan, S.V.2    Reddy, M.V.3    Mohanakrishna, G.4    Sarma, P.N.5
  • 64
    • 77955425014 scopus 로고    scopus 로고
    • The influence of operational conditions on the performance of a microbial fuel cell seeded with mesophilic anaerobic sludge
    • Martin E., Savadogo O., Guiot S.R., Tartakovsky B. The influence of operational conditions on the performance of a microbial fuel cell seeded with mesophilic anaerobic sludge. Biochem. Eng. J. 2010, 51:132-139.
    • (2010) Biochem. Eng. J. , vol.51 , pp. 132-139
    • Martin, E.1    Savadogo, O.2    Guiot, S.R.3    Tartakovsky, B.4
  • 65
    • 75349088069 scopus 로고    scopus 로고
    • Anodophilic biofilm catalyzes cathodic oxygen reduction
    • Cheng K.Y., Ho G., Ruwisch R.C. Anodophilic biofilm catalyzes cathodic oxygen reduction. Environ. Sci. Technol. 2010, 44:518-525.
    • (2010) Environ. Sci. Technol. , vol.44 , pp. 518-525
    • Cheng, K.Y.1    Ho, G.2    Ruwisch, R.C.3
  • 66
    • 33847607418 scopus 로고    scopus 로고
    • Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells
    • Cheng S., Logan B.E. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem. Commun. 2007, 9:492-496.
    • (2007) Electrochem. Commun. , vol.9 , pp. 492-496
    • Cheng, S.1    Logan, B.E.2
  • 67
    • 36849008648 scopus 로고    scopus 로고
    • Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms
    • Fan Y., Hu H.Q., Liu H. Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environ. Sci. Technol. 2007, 41:8154-8158.
    • (2007) Environ. Sci. Technol. , vol.41 , pp. 8154-8158
    • Fan, Y.1    Hu, H.Q.2    Liu, H.3
  • 68
    • 33846842443 scopus 로고    scopus 로고
    • Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells
    • Kim J.R., Cheng S., Oh S.E., Logan B. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ. Sci. Technol. 2007, 41:1004-1009.
    • (2007) Environ. Sci. Technol. , vol.41 , pp. 1004-1009
    • Kim, J.R.1    Cheng, S.2    Oh, S.E.3    Logan, B.4
  • 69
    • 34548451055 scopus 로고    scopus 로고
    • Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration
    • Fan Y., Hu H., Liu H. Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J. Power Sources 2007, 171:348-354.
    • (2007) J. Power Sources , vol.171 , pp. 348-354
    • Fan, Y.1    Hu, H.2    Liu, H.3
  • 70
    • 44949106443 scopus 로고    scopus 로고
    • Importance of temperature and anodic medium composition on microbial fuel cell (MFC) performance
    • Min B., Román O.B., Angelidaki I. Importance of temperature and anodic medium composition on microbial fuel cell (MFC) performance. Biotechnol. Lett. 2008, 30:1213-1218.
    • (2008) Biotechnol. Lett. , vol.30 , pp. 1213-1218
    • Min, B.1    Román, O.B.2    Angelidaki, I.3
  • 71
    • 79959248642 scopus 로고    scopus 로고
    • Influence of buffer solutions on the performance of microbial fuel cell electricity generation
    • Qiang L., Yuan L.J., Ding Q. Influence of buffer solutions on the performance of microbial fuel cell electricity generation. Huanjing Kexue/Environ. Sci. 2011, 32:1524-1528.
    • (2011) Huanjing Kexue/Environ. Sci. , vol.32 , pp. 1524-1528
    • Qiang, L.1    Yuan, L.J.2    Ding, Q.3
  • 72
    • 71849092516 scopus 로고    scopus 로고
    • Variation of power generation at different buffer types and conductivities in single chamber microbial fuel cells
    • Nam J.Y., Kim H.W., Lim K.H., Shin H.S., Logan B.E. Variation of power generation at different buffer types and conductivities in single chamber microbial fuel cells. Biosens. Bioelectron. 2010, 25:1155-1159.
    • (2010) Biosens. Bioelectron. , vol.25 , pp. 1155-1159
    • Nam, J.Y.1    Kim, H.W.2    Lim, K.H.3    Shin, H.S.4    Logan, B.E.5
  • 73
    • 57449121631 scopus 로고    scopus 로고
    • - carriers for decreasing the pH gradient between cathode and anode in biological fuel cells
    • - carriers for decreasing the pH gradient between cathode and anode in biological fuel cells. Environ. Sci. Technol. 2008, 42:8773-8777.
    • (2008) Environ. Sci. Technol. , vol.42 , pp. 8773-8777
    • Torres, C.I.1    Lee, H.S.2    Rittmann, B.E.3
  • 74
    • 77950440326 scopus 로고    scopus 로고
    • Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity
    • Fornero J.J., Rosenbaum M., Cotta M.A., Angenet L.T. Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity. Environ. Sci. Technol. 2010, 44:2728-2734.
    • (2010) Environ. Sci. Technol. , vol.44 , pp. 2728-2734
    • Fornero, J.J.1    Rosenbaum, M.2    Cotta, M.A.3    Angenet, L.T.4
  • 75
    • 57149106180 scopus 로고    scopus 로고
    • Effect of temperature on performance of microbial fuel cell using beer wastewater
    • Wang X., Feng Y.J., Qu Y.P., Li D.M., Li H., Ren N.Q. Effect of temperature on performance of microbial fuel cell using beer wastewater. Huanjing Kexue/Environ. Sci. 2008, 29:3128-3132.
    • (2008) Huanjing Kexue/Environ. Sci. , vol.29 , pp. 3128-3132
    • Wang, X.1    Feng, Y.J.2    Qu, Y.P.3    Li, D.M.4    Li, H.5    Ren, N.Q.6
  • 76
    • 62949204754 scopus 로고    scopus 로고
    • Experimental evaluation of influential factors for electricity harvesting from sediment using microbial fuel cell
    • Hong S.W., Chang I.S., Choi Y.S., Chung T.H. Experimental evaluation of influential factors for electricity harvesting from sediment using microbial fuel cell. Bioresour. Technol. 2009, 100:3029-3035.
    • (2009) Bioresour. Technol. , vol.100 , pp. 3029-3035
    • Hong, S.W.1    Chang, I.S.2    Choi, Y.S.3    Chung, T.H.4
  • 77
    • 70349428300 scopus 로고    scopus 로고
    • Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures
    • Ahn Y., Logan B.E. Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresour. Technol. 2010, 101:469-475.
    • (2010) Bioresour. Technol. , vol.101 , pp. 469-475
    • Ahn, Y.1    Logan, B.E.2
  • 78
    • 77956618234 scopus 로고    scopus 로고
    • Effect of temperature on the performance of microbial fuel cells
    • Guerrero A.L., Scott K., Head I.M., Mateo F., Ginesta A., Godinez C. Effect of temperature on the performance of microbial fuel cells. Fuel 2010, 89:3985-3994.
    • (2010) Fuel , vol.89 , pp. 3985-3994
    • Guerrero, A.L.1    Scott, K.2    Head, I.M.3    Mateo, F.4    Ginesta, A.5    Godinez, C.6
  • 79
    • 77956925968 scopus 로고    scopus 로고
    • Electroactive mixed culture biofilms in microbial bioelectrochemical systems: the role of temperature for biofilm formation and performance
    • Patil S.A., Harnisch F., Kapadnis B., Schröder U. Electroactive mixed culture biofilms in microbial bioelectrochemical systems: the role of temperature for biofilm formation and performance. Biosens. Bioelectron. 2010, 26:803-808.
    • (2010) Biosens. Bioelectron. , vol.26 , pp. 803-808
    • Patil, S.A.1    Harnisch, F.2    Kapadnis, B.3    Schröder, U.4
  • 80
    • 79551537593 scopus 로고    scopus 로고
    • Effect of temperature on the catalytic ability of electrochemically active biofilm as anode catalyst in microbial fuel cells
    • Liu Y., Climent V., Berná A., Feliu J.M. Effect of temperature on the catalytic ability of electrochemically active biofilm as anode catalyst in microbial fuel cells. Electroanalysis 2011, 23:387-394.
    • (2011) Electroanalysis , vol.23 , pp. 387-394
    • Liu, Y.1    Climent, V.2    Berná, A.3    Feliu, J.M.4
  • 81
    • 80052055384 scopus 로고    scopus 로고
    • Effect of operating temperature on performance of microbial fuel cell
    • Behera M., Murthy S.S.R., Ghangrekar M.M. Effect of operating temperature on performance of microbial fuel cell. Water Sci. Technol. 2011, 64:917-922.
    • (2011) Water Sci. Technol. , vol.64 , pp. 917-922
    • Behera, M.1    Murthy, S.S.R.2    Ghangrekar, M.M.3
  • 82
    • 79751475174 scopus 로고    scopus 로고
    • Acclimation stage on the performance of microbial fuel cells subjected to variation in COD, temperature, and electron acceptor
    • Wang X.L., Wu C., Zhang J.Q., Chi Q.L., Tian S.S. Acclimation stage on the performance of microbial fuel cells subjected to variation in COD, temperature, and electron acceptor. Adv. Mater. Res. 2011, 183-185:2346-2350.
    • (2011) Adv. Mater. Res. , pp. 2346-2350
    • Wang, X.L.1    Wu, C.2    Zhang, J.Q.3    Chi, Q.L.4    Tian, S.S.5
  • 83
    • 82455210853 scopus 로고    scopus 로고
    • Operational temperature regulates anodic biofilm growth and the development of electrogenic activity
    • Michie I.S., Kim J.R., Dinsdale R.M., Guwy A.J., Premier G.C. Operational temperature regulates anodic biofilm growth and the development of electrogenic activity. Appl. Microbiol. Biotechnol. 2011, 92:419-430.
    • (2011) Appl. Microbiol. Biotechnol. , vol.92 , pp. 419-430
    • Michie, I.S.1    Kim, J.R.2    Dinsdale, R.M.3    Guwy, A.J.4    Premier, G.C.5
  • 84
    • 84455204069 scopus 로고    scopus 로고
    • Effect of temperature on electricity generation of single-chamber microbial fuel cells with proton exchange membrane
    • Tang Y., He Y., Yu P., Sun H., Fu J. Effect of temperature on electricity generation of single-chamber microbial fuel cells with proton exchange membrane. Adv. Mater. Res. 2012, 393-395:1169-1172.
    • (2012) Adv. Mater. Res. , pp. 1169-1172
    • Tang, Y.1    He, Y.2    Yu, P.3    Sun, H.4    Fu, J.5
  • 85
    • 84863240047 scopus 로고    scopus 로고
    • Operating characteristics of microbial fuel cell using sludge
    • Liu Z.H., Li X.M., Zheng F.L., Yang Q. Operating characteristics of microbial fuel cell using sludge. China Environ. Sci. 2012, 32:268-273.
    • (2012) China Environ. Sci. , vol.32 , pp. 268-273
    • Liu, Z.H.1    Li, X.M.2    Zheng, F.L.3    Yang, Q.4
  • 88
    • 79952420550 scopus 로고    scopus 로고
    • The influence of psychrophilic and mesophilic start-up temperature on microbial fuel cell system performance
    • Michie I.S., Kim J.R., Dinsdale R.M., Guwy A.J., Premier G.C. The influence of psychrophilic and mesophilic start-up temperature on microbial fuel cell system performance. Environ. Sci. Technol. 2011, 4:1011-1019.
    • (2011) Environ. Sci. Technol. , vol.4 , pp. 1011-1019
    • Michie, I.S.1    Kim, J.R.2    Dinsdale, R.M.3    Guwy, A.J.4    Premier, G.C.5
  • 89
    • 78650608282 scopus 로고    scopus 로고
    • Electricity generation of single-chamber microbial fuel cells at low temperatures
    • Cheng S., Xing D., Logan B.E. Electricity generation of single-chamber microbial fuel cells at low temperatures. Biosens. Bioelectron. 2011, 26:1913-1917.
    • (2011) Biosens. Bioelectron. , vol.26 , pp. 1913-1917
    • Cheng, S.1    Xing, D.2    Logan, B.E.3
  • 90
    • 84866443770 scopus 로고    scopus 로고
    • Anodic biofilm in single-chamber microbial fuel cells cultivated under different temperatures
    • Liu L., Tsyganova O., Lee D.J., Suc A., Chang J.S., Wang A., Ren N. Anodic biofilm in single-chamber microbial fuel cells cultivated under different temperatures. Int. J. Hydrogen Energy 2012, 10.1016/j.ijhydene.2012.03.084.
    • (2012) Int. J. Hydrogen Energy
    • Liu, L.1    Tsyganova, O.2    Lee, D.J.3    Suc, A.4    Chang, J.S.5    Wang, A.6    Ren, N.7
  • 92
    • 34447333104 scopus 로고    scopus 로고
    • Bioelectricity production by mediatorless microbial fuel cell under acidophilic condition using wastewater as substrate: influence of substrate loading rate
    • Mohan S.V., Raghavulu S.V., Srikanth S., Sarma P.N. Bioelectricity production by mediatorless microbial fuel cell under acidophilic condition using wastewater as substrate: influence of substrate loading rate. Curr. Sci. 2007, 92:1720-1726.
    • (2007) Curr. Sci. , vol.92 , pp. 1720-1726
    • Mohan, S.V.1    Raghavulu, S.V.2    Srikanth, S.3    Sarma, P.N.4
  • 93
    • 50349093076 scopus 로고    scopus 로고
    • Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes
    • Aelterman P., Versichele M., Marzorati M., Boon N., Verstraete W. Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes. Bioresour. Technol. 2008, 99:8895-8902.
    • (2008) Bioresour. Technol. , vol.99 , pp. 8895-8902
    • Aelterman, P.1    Versichele, M.2    Marzorati, M.3    Boon, N.4    Verstraete, W.5
  • 94
    • 60349105605 scopus 로고    scopus 로고
    • Integrated function of microbial fuel cell (MFC) as bioelectrochemical treatment system associated with bioelectricity generation under higher substrate load
    • Mohan S.V., Raghavulu S.V., Peri D., Sarma P.N. Integrated function of microbial fuel cell (MFC) as bioelectrochemical treatment system associated with bioelectricity generation under higher substrate load. Biosens. Bioelectron. 2009, 24:2021-2027.
    • (2009) Biosens. Bioelectron. , vol.24 , pp. 2021-2027
    • Mohan, S.V.1    Raghavulu, S.V.2    Peri, D.3    Sarma, P.N.4
  • 95
    • 72049115228 scopus 로고    scopus 로고
    • Effect of increasing anode surface area on the performance of a single chamber microbial fuel cell
    • Lorenzo M.D., Scott K., Curtis T.P., Head I.M. Effect of increasing anode surface area on the performance of a single chamber microbial fuel cell. Chem. Eng. J. 2010, 156:40-48.
    • (2010) Chem. Eng. J. , vol.156 , pp. 40-48
    • Lorenzo, M.D.1    Scott, K.2    Curtis, T.P.3    Head, I.M.4
  • 96
    • 74449090365 scopus 로고    scopus 로고
    • Phosphatase and dehydrogenase activities in anodic chamber of single chamber microbial fuel cell (MFC) at variable substrate loading conditions
    • Reddy M.V., Srikanth S., Mohan S.V., Sarma P.N. Phosphatase and dehydrogenase activities in anodic chamber of single chamber microbial fuel cell (MFC) at variable substrate loading conditions. Bioelectrochemistry 2010, 77:125-132.
    • (2010) Bioelectrochemistry , vol.77 , pp. 125-132
    • Reddy, M.V.1    Srikanth, S.2    Mohan, S.V.3    Sarma, P.N.4
  • 97
    • 71049186062 scopus 로고    scopus 로고
    • Modular tubular microbial fuel cells for energy recovery during sucrose wastewater treatment at low organic loading rate
    • Kim J.R., Premier G.C., Hawkes F.R., Rodríguez J., Dinsdale R.M., Guwy A.J. Modular tubular microbial fuel cells for energy recovery during sucrose wastewater treatment at low organic loading rate. Bioresour. Technol. 2010, 101:1190-1198.
    • (2010) Bioresour. Technol. , vol.101 , pp. 1190-1198
    • Kim, J.R.1    Premier, G.C.2    Hawkes, F.R.3    Rodríguez, J.4    Dinsdale, R.M.5    Guwy, A.J.6
  • 98
    • 70350053299 scopus 로고    scopus 로고
    • Effects of organic loading rates on the continuous electricity generation from fermented wastewater using a single-chamber microbial fuel cell
    • Nam J.Y., Kim H.W., Lim K.H., Shin H.S. Effects of organic loading rates on the continuous electricity generation from fermented wastewater using a single-chamber microbial fuel cell. Bioresour. Technol. 2010, 101:S33-S37.
    • (2010) Bioresour. Technol. , vol.101
    • Nam, J.Y.1    Kim, H.W.2    Lim, K.H.3    Shin, H.S.4
  • 99
    • 80053202393 scopus 로고    scopus 로고
    • Effects of microbial species, organic loading and substrate degradation rate on the power generation capability of microbial fuel cells
    • Juang D.F., Yang P.C., Chou H.Y., Chiu L.J. Effects of microbial species, organic loading and substrate degradation rate on the power generation capability of microbial fuel cells. Biotechnol. Lett. 2011, 33:2147-2160.
    • (2011) Biotechnol. Lett. , vol.33 , pp. 2147-2160
    • Juang, D.F.1    Yang, P.C.2    Chou, H.Y.3    Chiu, L.J.4
  • 100
    • 79955477732 scopus 로고    scopus 로고
    • Canteen based composite food waste as potential anodic fuel for bioelectricity generation in single chambered microbial fuel cell (MFC): bio-electrochemical evaluation under increasing substrate loading condition
    • Goud R.K., Babu P.S., Mohan S.V. Canteen based composite food waste as potential anodic fuel for bioelectricity generation in single chambered microbial fuel cell (MFC): bio-electrochemical evaluation under increasing substrate loading condition. Int. J. Hydrogen Energy 2011, 36:6210-6218.
    • (2011) Int. J. Hydrogen Energy , vol.36 , pp. 6210-6218
    • Goud, R.K.1    Babu, P.S.2    Mohan, S.V.3
  • 101
    • 84858291145 scopus 로고    scopus 로고
    • Electrogenic activity and electron losses under increasing organic load of recalcitrant pharmaceutical wastewater
    • doi:10.1016/j.ijhydene.2011.12.112.
    • Velvizhi G., Mohan S.V. Electrogenic activity and electron losses under increasing organic load of recalcitrant pharmaceutical wastewater. Int. J. Hydrogen Energy 2012, doi:10.1016/j.ijhydene.2011.12.112.
    • (2012) Int. J. Hydrogen Energy
    • Velvizhi, G.1    Mohan, S.V.2
  • 102
    • 26044444072 scopus 로고    scopus 로고
    • Residence time distribution in microbial fuel cell and its influence on COD removal with electricity generation
    • Moon H., Chang I.S., Jang J.K., Kim B.H. Residence time distribution in microbial fuel cell and its influence on COD removal with electricity generation. Biochem. Eng. J. 2005, 27:59-65.
    • (2005) Biochem. Eng. J. , vol.27 , pp. 59-65
    • Moon, H.1    Chang, I.S.2    Jang, J.K.3    Kim, B.H.4
  • 103
    • 0035203928 scopus 로고    scopus 로고
    • Influence of the hydrodynamics on the biofilm formation by mass transport analysis
    • Guillou D.H., Tribollet B., Festy D. Influence of the hydrodynamics on the biofilm formation by mass transport analysis. Bioelectrochemistry 2000, 53:119-125.
    • (2000) Bioelectrochemistry , vol.53 , pp. 119-125
    • Guillou, D.H.1    Tribollet, B.2    Festy, D.3
  • 106
    • 57049106800 scopus 로고    scopus 로고
    • Role of shear stress on composition, diversity and dynamics of biofilm bacterial communities
    • Alice Rochex A., Godon J.-J., Bernet N., Escudie R. Role of shear stress on composition, diversity and dynamics of biofilm bacterial communities. Water Res. 2008, 42:4915-4922.
    • (2008) Water Res. , vol.42 , pp. 4915-4922
    • Alice Rochex, A.1    Godon, J.-J.2    Bernet, N.3    Escudie, R.4
  • 107
    • 77952043068 scopus 로고    scopus 로고
    • Assessment of the effects of flow rate and ionic strength on the performance of an air-cathode microbial fuel cell using electrochemical impedance spectroscopy
    • Aaron D., Tsouris C., Hamilton C.Y., Borole A.P. Assessment of the effects of flow rate and ionic strength on the performance of an air-cathode microbial fuel cell using electrochemical impedance spectroscopy. Energies 2010, 3:592-606.
    • (2010) Energies , vol.3 , pp. 592-606
    • Aaron, D.1    Tsouris, C.2    Hamilton, C.Y.3    Borole, A.P.4
  • 108
    • 84859955174 scopus 로고    scopus 로고
    • Effects of flow rate and chemical oxygen demand removal characteristics on power generation performance of microbial fuel cells
    • Juang D.F., Yang P.C., Kuo T.H. Effects of flow rate and chemical oxygen demand removal characteristics on power generation performance of microbial fuel cells. Int. J. Environ. Sci. Technol. 2012, 9:267-280.
    • (2012) Int. J. Environ. Sci. Technol. , vol.9 , pp. 267-280
    • Juang, D.F.1    Yang, P.C.2    Kuo, T.H.3
  • 109
    • 76049106291 scopus 로고    scopus 로고
    • Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells
    • Ieropoulos I., Winfield J., Greenman J. Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells. Bioresour. Technol. 2010, 101:3520-3525.
    • (2010) Bioresour. Technol. , vol.101 , pp. 3520-3525
    • Ieropoulos, I.1    Winfield, J.2    Greenman, J.3
  • 110
    • 2442713124 scopus 로고    scopus 로고
    • A review of mathematical models for hydrogen and direct methanol polymer electrolyte membrane fuel cells
    • Yao K.Z., Karan K., McAuley K.B., Oosthuizen P., Peppley B., Xie T. A review of mathematical models for hydrogen and direct methanol polymer electrolyte membrane fuel cells. Fuel Cells 2004, 4:3-29.
    • (2004) Fuel Cells , vol.4 , pp. 3-29
    • Yao, K.Z.1    Karan, K.2    McAuley, K.B.3    Oosthuizen, P.4    Peppley, B.5    Xie, T.6
  • 112
    • 0029113410 scopus 로고
    • Modelling of a microbial fuel cell process
    • Zhang X.C., Halme A. Modelling of a microbial fuel cell process. Biotechnol. Lett. 1995, 17:809-814.
    • (1995) Biotechnol. Lett. , vol.17 , pp. 809-814
    • Zhang, X.C.1    Halme, A.2
  • 113
    • 36749093442 scopus 로고    scopus 로고
    • Conduction-based modeling of the biofilm anode of a microbial fuel cell
    • Marcus A.K., Torres C.I., Rittman B.E. Conduction-based modeling of the biofilm anode of a microbial fuel cell. Biotechnol. Bioeng. 2007, 98:1171-1182.
    • (2007) Biotechnol. Bioeng. , vol.98 , pp. 1171-1182
    • Marcus, A.K.1    Torres, C.I.2    Rittman, B.E.3
  • 116
    • 77649237402 scopus 로고    scopus 로고
    • Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance
    • Picioreanu C., van Loosdrecht M.C.M., Curtis T.P., Scott K. Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance. Bioelectrochemistry 2010, 78:8-24.
    • (2010) Bioelectrochemistry , vol.78 , pp. 8-24
    • Picioreanu, C.1    van Loosdrecht, M.C.M.2    Curtis, T.P.3    Scott, K.4
  • 117
    • 66149189097 scopus 로고    scopus 로고
    • Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater
    • Wen Q., Wu Y., Cao D., Zhao L., Sun Q. Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater. Bioresour. Technol. 2009, 100:4171-4175.
    • (2009) Bioresour. Technol. , vol.100 , pp. 4171-4175
    • Wen, Q.1    Wu, Y.2    Cao, D.3    Zhao, L.4    Sun, Q.5
  • 118
    • 69549088017 scopus 로고    scopus 로고
    • Modelling and simulation of two-chamber microbial fuel cell
    • Zeng Y., Choo Y.F., Kim B.H., Wu P. Modelling and simulation of two-chamber microbial fuel cell. J. Power Sources 2010, 195:79-89.
    • (2010) J. Power Sources , vol.195 , pp. 79-89
    • Zeng, Y.1    Choo, Y.F.2    Kim, B.H.3    Wu, P.4
  • 121
    • 84862218531 scopus 로고    scopus 로고
    • Optimizing energy productivity of microbial electrochemical cells
    • Pinto R.P., Tartakovsky B., Srinivasan B. Optimizing energy productivity of microbial electrochemical cells. J. Process Control 2012, 22:1079-1086.
    • (2012) J. Process Control , vol.22 , pp. 1079-1086
    • Pinto, R.P.1    Tartakovsky, B.2    Srinivasan, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.