-
1
-
-
19444367096
-
Microbial fuel cells: novel biotechnology for energy generation
-
Rabaey K., Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 2005, 23:291-298.
-
(2005)
Trends Biotechnol.
, vol.23
, pp. 291-298
-
-
Rabaey, K.1
Verstraete, W.2
-
2
-
-
58149129484
-
Recent developments in microbial fuel cell technologies for sustainable bioenergy
-
Watanabe K. Recent developments in microbial fuel cell technologies for sustainable bioenergy. J. Biosci. Bioeng. 2008, 106:528-536.
-
(2008)
J. Biosci. Bioeng.
, vol.106
, pp. 528-536
-
-
Watanabe, K.1
-
3
-
-
33750443594
-
Application of bacterial biocathodes in microbial fuel cells
-
He Z., Angenent L.T. Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 2006, 18:2009-2015.
-
(2006)
Electroanalysis
, vol.18
, pp. 2009-2015
-
-
He, Z.1
Angenent, L.T.2
-
4
-
-
65749116702
-
Engineering materials and biology to boost performance of microbial fuel cells: a critical review
-
Rinaldi A., Mecheri B., Garavaglia V., Licoccia S., Nardo P.D., Traversa E. Engineering materials and biology to boost performance of microbial fuel cells: a critical review. Energy Environ. Sci. 2008, 1:417-429.
-
(2008)
Energy Environ. Sci.
, vol.1
, pp. 417-429
-
-
Rinaldi, A.1
Mecheri, B.2
Garavaglia, V.3
Licoccia, S.4
Nardo, P.D.5
Traversa, E.6
-
5
-
-
77957348875
-
Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells
-
Huang L., Regan J.M., Quan X. Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresour. Technol. 2011, 102:316-323.
-
(2011)
Bioresour. Technol.
, vol.102
, pp. 316-323
-
-
Huang, L.1
Regan, J.M.2
Quan, X.3
-
6
-
-
77957336587
-
Recent progress and continuing challenges in bio-fuel cells: Part II. Microbial
-
Osman M.H., Shah A.A., Walsh F.C. Recent progress and continuing challenges in bio-fuel cells: Part II. Microbial. Biosens. Bioelectron. 2010, 26:953-963.
-
(2010)
Biosens. Bioelectron.
, vol.26
, pp. 953-963
-
-
Osman, M.H.1
Shah, A.A.2
Walsh, F.C.3
-
8
-
-
34447285505
-
A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy
-
Du Z., Li H., Gu T. A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol. Adv. 2007, 25:464-482.
-
(2007)
Biotechnol. Adv.
, vol.25
, pp. 464-482
-
-
Du, Z.1
Li, H.2
Gu, T.3
-
9
-
-
34548017839
-
Challenges in microbial fuel cell development and operation
-
Kim B.H., Chang I.S., Gadd G.M. Challenges in microbial fuel cell development and operation. Appl. Microbiol. Biotechnol. 2007, 76:485-494.
-
(2007)
Appl. Microbiol. Biotechnol.
, vol.76
, pp. 485-494
-
-
Kim, B.H.1
Chang, I.S.2
Gadd, G.M.3
-
10
-
-
58949088600
-
Microbial fuel cells: recent advances, bacterial communities and application beyond electricity generation
-
Kim I.S., Chae K.J., Choi M.J., Verstraete W. Microbial fuel cells: recent advances, bacterial communities and application beyond electricity generation. Environ. Eng. Res. 2008, 13:51-65.
-
(2008)
Environ. Eng. Res.
, vol.13
, pp. 51-65
-
-
Kim, I.S.1
Chae, K.J.2
Choi, M.J.3
Verstraete, W.4
-
11
-
-
77957019058
-
Sustainable wastewater treatment: how might microbial fuel cells contribute
-
Oh S.T., Kim J.R., Premier G.C., Lee T.H., Kim C., Sloan W.T. Sustainable wastewater treatment: how might microbial fuel cells contribute. Biotechnol. Adv. 2010, 28:871-881.
-
(2010)
Biotechnol. Adv.
, vol.28
, pp. 871-881
-
-
Oh, S.T.1
Kim, J.R.2
Premier, G.C.3
Lee, T.H.4
Kim, C.5
Sloan, W.T.6
-
12
-
-
77957901715
-
Recent developments in microbial fuel cells: a review
-
Das S., Mangwani N. Recent developments in microbial fuel cells: a review. J. Sci. Ind. Res. 2010, 69:727-731.
-
(2010)
J. Sci. Ind. Res.
, vol.69
, pp. 727-731
-
-
Das, S.1
Mangwani, N.2
-
13
-
-
74549132545
-
Microbial fuel cells as an alternative energy option
-
Balat M. Microbial fuel cells as an alternative energy option. Energy Sources A 2010, 32:26-35.
-
(2010)
Energy Sources A
, vol.32
, pp. 26-35
-
-
Balat, M.1
-
14
-
-
33751004376
-
Electricity-producing bacterial communities in microbial fuel cells
-
Logan B.E., Regan J.M. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol. 2006, 14:512-518.
-
(2006)
Trends Microbiol.
, vol.14
, pp. 512-518
-
-
Logan, B.E.1
Regan, J.M.2
-
15
-
-
77953160485
-
Microbial fuel cells, a current review
-
Franks A.E., Nevin K.P. Microbial fuel cells, a current review. Energies 2010, 3:899-919.
-
(2010)
Energies
, vol.3
, pp. 899-919
-
-
Franks, A.E.1
Nevin, K.P.2
-
16
-
-
33646701906
-
Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells
-
Chang I.S., Moon H., Bretschger O., Jang J.K., Park H.I., Nealson K.H., Kim B.H. Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells. J. Microbiol. Biotechnol. 2006, 16:163-177.
-
(2006)
J. Microbiol. Biotechnol.
, vol.16
, pp. 163-177
-
-
Chang, I.S.1
Moon, H.2
Bretschger, O.3
Jang, J.K.4
Park, H.I.5
Nealson, K.H.6
Kim, B.H.7
-
17
-
-
33748566549
-
Microbial fuel cells: methodology and technology
-
Logan B.E., Hamelers B., Rozendal R., Schroder U., Keller J., Freguia S., Aelterman P., Verstraete W., Rabaey K. Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 2006, 40:5181-5192.
-
(2006)
Environ. Sci. Technol.
, vol.40
, pp. 5181-5192
-
-
Logan, B.E.1
Hamelers, B.2
Rozendal, R.3
Schroder, U.4
Keller, J.5
Freguia, S.6
Aelterman, P.7
Verstraete, W.8
Rabaey, K.9
-
18
-
-
78651107055
-
Microbial fuel cells for energy self-sufficient domestic wastewater treatment-a review and discussion from energetic consideration
-
Lefebvre O., Uzabiaga A., Chang I.S., Kim B.H., Ng H.Y. Microbial fuel cells for energy self-sufficient domestic wastewater treatment-a review and discussion from energetic consideration. Appl. Microbiol. Biotechnol. 2011, 89:259-270.
-
(2011)
Appl. Microbiol. Biotechnol.
, vol.89
, pp. 259-270
-
-
Lefebvre, O.1
Uzabiaga, A.2
Chang, I.S.3
Kim, B.H.4
Ng, H.Y.5
-
19
-
-
33746067144
-
Microbial fuel cells in relation to conventional anaerobic digestion technology
-
Pham T.H., Rabaey K., Aelterman P., Clauwaert P., De Schamphelaire L., Boon N., Verstraete W. Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng. Life Sci. 2006, 6:285-292.
-
(2006)
Eng. Life Sci.
, vol.6
, pp. 285-292
-
-
Pham, T.H.1
Rabaey, K.2
Aelterman, P.3
Clauwaert, P.4
De Schamphelaire, L.5
Boon, N.6
Verstraete, W.7
-
20
-
-
34447523820
-
Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency
-
Schroder U. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys. Chem. Chem. Phys. 2007, 9:2619-2629.
-
(2007)
Phys. Chem. Chem. Phys.
, vol.9
, pp. 2619-2629
-
-
Schroder, U.1
-
21
-
-
42749096540
-
Cathodic limitations in microbial fuel cells: an overview
-
Yazdia H.R., Carverb S.M., Christya A.D., Tuovinen O.H. Cathodic limitations in microbial fuel cells: an overview. J. Power Sources 2008, 180:683-694.
-
(2008)
J. Power Sources
, vol.180
, pp. 683-694
-
-
Yazdia, H.R.1
Carverb, S.M.2
Christya, A.D.3
Tuovinen, O.H.4
-
22
-
-
74549151753
-
A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production
-
Pant D., Bogaert G.V., Diels L., Vanbroekhoven K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol. 2010, 101:1533-1543.
-
(2010)
Bioresour. Technol.
, vol.101
, pp. 1533-1543
-
-
Pant, D.1
Bogaert, G.V.2
Diels, L.3
Vanbroekhoven, K.4
-
23
-
-
77957338115
-
Recent advances in the separators for microbial fuel cells
-
Li W.W., Sheng G.P., Liu X.W., Yu H.Q. Recent advances in the separators for microbial fuel cells. Bioresour. Technol. 2011, 102:244-252.
-
(2011)
Bioresour. Technol.
, vol.102
, pp. 244-252
-
-
Li, W.W.1
Sheng, G.P.2
Liu, X.W.3
Yu, H.Q.4
-
24
-
-
80052699260
-
Recent progress in electrodes for microbial fuel cells
-
Wei J., Liang P., Huang X. Recent progress in electrodes for microbial fuel cells. Bioresour. Technol. 2011, 102:9335-9344.
-
(2011)
Bioresour. Technol.
, vol.102
, pp. 9335-9344
-
-
Wei, J.1
Liang, P.2
Huang, X.3
-
25
-
-
79952280859
-
An overview of electrode materials in microbial fuel cells
-
Zhou M., Chi M., Luo J., He H., Jin T. An overview of electrode materials in microbial fuel cells. J. Power Sources 2011, 196:4427-4435.
-
(2011)
J. Power Sources
, vol.196
, pp. 4427-4435
-
-
Zhou, M.1
Chi, M.2
Luo, J.3
He, H.4
Jin, T.5
-
26
-
-
58149133820
-
Engineering microbial fuel cells: recent patent and new directions
-
Biffinger J.C., Ringeisen B.R. Engineering microbial fuel cells: recent patent and new directions. Recent Patents on Biotechnology 2008, 2:150-155.
-
(2008)
Recent Patents on Biotechnology
, vol.2
, pp. 150-155
-
-
Biffinger, J.C.1
Ringeisen, B.R.2
-
27
-
-
40849092415
-
The first demonstration of a microbial fuel cell as a viable power supply: powering a meteorological buoy
-
Tender L.M., Gray S.A., Groveman E., Lowy D.A., Kauffman P., Melhado J., Tyce R.C., Flynn D., Petrecca R., Dobarro J. The first demonstration of a microbial fuel cell as a viable power supply: powering a meteorological buoy. J. Power Sources 2008, 179:571-575.
-
(2008)
J. Power Sources
, vol.179
, pp. 571-575
-
-
Tender, L.M.1
Gray, S.A.2
Groveman, E.3
Lowy, D.A.4
Kauffman, P.5
Melhado, J.6
Tyce, R.C.7
Flynn, D.8
Petrecca, R.9
Dobarro, J.10
-
28
-
-
55949104194
-
Microbial fuel cells based on carbon veil electrodes: stack configuration and scalability
-
Ieropoulos I., Greenman J., Melhuish C. Microbial fuel cells based on carbon veil electrodes: stack configuration and scalability. Int. J. Energy Res. 2008, 32:1228-1240.
-
(2008)
Int. J. Energy Res.
, vol.32
, pp. 1228-1240
-
-
Ieropoulos, I.1
Greenman, J.2
Melhuish, C.3
-
30
-
-
46149097857
-
Minimizing losses in bio-electrochemical systems: the road to applications
-
Clauwaert P., Aelterman P., Pham T.H., De Schamphelaire L., Carballa M., Rabaey K., Verstraete W. Minimizing losses in bio-electrochemical systems: the road to applications. Appl. Microbiol. Biotechnol. 2008, 79:901-913.
-
(2008)
Appl. Microbiol. Biotechnol.
, vol.79
, pp. 901-913
-
-
Clauwaert, P.1
Aelterman, P.2
Pham, T.H.3
De Schamphelaire, L.4
Carballa, M.5
Rabaey, K.6
Verstraete, W.7
-
31
-
-
76849084828
-
Scaling up microbial fuel cells and other bioelectrochemical systems
-
Logan B.E. Scaling up microbial fuel cells and other bioelectrochemical systems. Appl. Microbiol. Biotechnol. 2010, 85:1665-1671.
-
(2010)
Appl. Microbiol. Biotechnol.
, vol.85
, pp. 1665-1671
-
-
Logan, B.E.1
-
32
-
-
79551684612
-
Increasing power generation for scaling up single-chamber air cathode microbial fuel cells
-
Cheng S., Logan B.E. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells. Bioresour. Technol. 2011, 102:4468-4473.
-
(2011)
Bioresour. Technol.
, vol.102
, pp. 4468-4473
-
-
Cheng, S.1
Logan, B.E.2
-
33
-
-
40049088335
-
Scale-up of membrane-free single-chamber microbial fuel cells
-
Liu H., Cheng S., Huang L., Logan B.E. Scale-up of membrane-free single-chamber microbial fuel cells. J. Power Sources 2008, 179:274-279.
-
(2008)
J. Power Sources
, vol.179
, pp. 274-279
-
-
Liu, H.1
Cheng, S.2
Huang, L.3
Logan, B.E.4
-
34
-
-
72249101946
-
Analysis and improvement of a scaled-up and stacked microbial fuel cell
-
Dekker A., Heijne A.T., Saakes M., Hamelers H.V.M., Buisman C.J.N. Analysis and improvement of a scaled-up and stacked microbial fuel cell. Environ. Sci. Technol. 2009, 43:9038-9042.
-
(2009)
Environ. Sci. Technol.
, vol.43
, pp. 9038-9042
-
-
Dekker, A.1
Heijne, A.T.2
Saakes, M.3
Hamelers, H.V.M.4
Buisman, C.J.N.5
-
35
-
-
65049085916
-
Substrate cross-conduction effect on the performance of serially connected microbial fuel cell stack
-
Zhuang L., Zhou S. Substrate cross-conduction effect on the performance of serially connected microbial fuel cell stack. Electrochem. Commun. 2009, 11:937-940.
-
(2009)
Electrochem. Commun.
, vol.11
, pp. 937-940
-
-
Zhuang, L.1
Zhou, S.2
-
36
-
-
42549170183
-
A novel configuration of microbial fuel cell stack bridged internally through an extra cation exchange membrane
-
Liu Z., Liu J., Zhang S., Su Z. A novel configuration of microbial fuel cell stack bridged internally through an extra cation exchange membrane. Biotechnol. Lett. 2008, 30:1017-1023.
-
(2008)
Biotechnol. Lett.
, vol.30
, pp. 1017-1023
-
-
Liu, Z.1
Liu, J.2
Zhang, S.3
Su, Z.4
-
37
-
-
84855356804
-
Scalable microbial fuel cell (MFC) stack for continuous real wastewater treatment
-
Zhuang L., Zheng Y., Zhou S., Yuan Y., Yuan H., Chen Y. Scalable microbial fuel cell (MFC) stack for continuous real wastewater treatment. Bioresour. Technol. 2012, 106:82-88.
-
(2012)
Bioresour. Technol.
, vol.106
, pp. 82-88
-
-
Zhuang, L.1
Zheng, Y.2
Zhou, S.3
Yuan, Y.4
Yuan, H.5
Chen, Y.6
-
38
-
-
84865567149
-
Long-term evaluation of a 10-liter serpentine-type microbial fuel cells stack treating brewery wastewater
-
Zhuang L., Yuan Y., Wang Y., Zhou S. Long-term evaluation of a 10-liter serpentine-type microbial fuel cells stack treating brewery wastewater. Bioresour. Technol. 2012, 123:406-412.
-
(2012)
Bioresour. Technol.
, vol.123
, pp. 406-412
-
-
Zhuang, L.1
Yuan, Y.2
Wang, Y.3
Zhou, S.4
-
39
-
-
77649234772
-
Improved energy output levels from small-scale microbial fuel cells
-
Ieropoulos I., Greenman J., Melhuish C. Improved energy output levels from small-scale microbial fuel cells. Bioelectrochemistry 2010, 78:44-50.
-
(2010)
Bioelectrochemistry
, vol.78
, pp. 44-50
-
-
Ieropoulos, I.1
Greenman, J.2
Melhuish, C.3
-
40
-
-
69349103099
-
Granular activated carbon single-chamber microbial fuel cells (GAC-SCMFCs): a design suitable for large-scale wastewater treatment processes
-
Jiang D., Li B. Granular activated carbon single-chamber microbial fuel cells (GAC-SCMFCs): a design suitable for large-scale wastewater treatment processes. Biochem. Eng. J. 2009, 47:31-37.
-
(2009)
Biochem. Eng. J.
, vol.47
, pp. 31-37
-
-
Jiang, D.1
Li, B.2
-
41
-
-
77955579002
-
Power recovery with multi-anode/cathode microbial fuel cells suitable for future large-scale applications
-
Jiang D., Li X., Raymond D., Mooradain J., Li B. Power recovery with multi-anode/cathode microbial fuel cells suitable for future large-scale applications. Int. J. Hydrogen Energy 2010, 35:8683-8689.
-
(2010)
Int. J. Hydrogen Energy
, vol.35
, pp. 8683-8689
-
-
Jiang, D.1
Li, X.2
Raymond, D.3
Mooradain, J.4
Li, B.5
-
42
-
-
34248229805
-
Tubular membrane cathodes for scalable power generation in microbial fuel fells
-
Zuo Y., Cheng S., Call D., Logan B. Tubular membrane cathodes for scalable power generation in microbial fuel fells. Environ. Sci. Technol. 2007, 41:3347-3353.
-
(2007)
Environ. Sci. Technol.
, vol.41
, pp. 3347-3353
-
-
Zuo, Y.1
Cheng, S.2
Call, D.3
Logan, B.4
-
43
-
-
51949116825
-
Ion exchange membrane cathodes for scalable microbial fuel cells
-
Zuo Y., Cheng S., Logan B. Ion exchange membrane cathodes for scalable microbial fuel cells. Environ. Sci. Technol. 2008, 42:6967-6972.
-
(2008)
Environ. Sci. Technol.
, vol.42
, pp. 6967-6972
-
-
Zuo, Y.1
Cheng, S.2
Logan, B.3
-
44
-
-
67649338423
-
Optimization of a Pt-free cathode suitable for practical applications of microbial fuel cells
-
Lefebvre O., Ooi W.K., Tang Z., Abdullah-Al-Mamun Md., Chua D.H.C., Ng H.Y. Optimization of a Pt-free cathode suitable for practical applications of microbial fuel cells. Bioresour. Technol. 2009, 100:4907-4910.
-
(2009)
Bioresour. Technol.
, vol.100
, pp. 4907-4910
-
-
Lefebvre, O.1
Ooi, W.K.2
Tang, Z.3
Abdullah-Al-Mamun, M.4
Chua, D.H.C.5
Ng, H.Y.6
-
45
-
-
67650064598
-
Membrane-less cloth cathode assembly (CCA) for scalable microbial fuel cells
-
Zhuang L., Zhoua S., Wang Y., Liu C., Geng S. Membrane-less cloth cathode assembly (CCA) for scalable microbial fuel cells. Biosens. Bioelectron. 2009, 24:3652-3656.
-
(2009)
Biosens. Bioelectron.
, vol.24
, pp. 3652-3656
-
-
Zhuang, L.1
Zhoua, S.2
Wang, Y.3
Liu, C.4
Geng, S.5
-
46
-
-
77950915947
-
Comparison of membrane- and cloth-cathode assembly for scalable microbial fuel cells: construction, performance and cost
-
Zhuang L., Feng C., Zhoua S., Li Y., Wang Y. Comparison of membrane- and cloth-cathode assembly for scalable microbial fuel cells: construction, performance and cost. Process Biochem. 2010, 45:929-934.
-
(2010)
Process Biochem.
, vol.45
, pp. 929-934
-
-
Zhuang, L.1
Feng, C.2
Zhoua, S.3
Li, Y.4
Wang, Y.5
-
47
-
-
79959367979
-
Performance of a scaled-up microbial fuel cell with iron reduction as the cathode reaction
-
Heijne A.T., Liu F., van Rijnsoever L.S., Saakes M., Hamelers H.V.M., Buisman C.J.N. Performance of a scaled-up microbial fuel cell with iron reduction as the cathode reaction. J. Power Sources 2011, 196:7572-7577.
-
(2011)
J. Power Sources
, vol.196
, pp. 7572-7577
-
-
Heijne, A.T.1
Liu, F.2
van Rijnsoever, L.S.3
Saakes, M.4
Hamelers, H.V.M.5
Buisman, C.J.N.6
-
48
-
-
84864224064
-
Improved performance of CEA microbial fuel cells with increased reactor size
-
Fan Y., Han S.K., Liu H. Improved performance of CEA microbial fuel cells with increased reactor size. Energy Environ. Sci. 2012, 5:8273-8280.
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 8273-8280
-
-
Fan, Y.1
Han, S.K.2
Liu, H.3
-
49
-
-
67349191395
-
The influence of acidity on microbial fuel cells containing Shewanella oneidensis
-
Biffinger J.C., Pietron J., Bretschger O., Nadeau L.J., Johnson G.R., Williams C.C., Nealson K.H., Ringeisen B.R. The influence of acidity on microbial fuel cells containing Shewanella oneidensis. Biosens. Bioelectron. 2008, 24:900-905.
-
(2008)
Biosens. Bioelectron.
, vol.24
, pp. 900-905
-
-
Biffinger, J.C.1
Pietron, J.2
Bretschger, O.3
Nadeau, L.J.4
Johnson, G.R.5
Williams, C.C.6
Nealson, K.H.7
Ringeisen, B.R.8
-
50
-
-
53649105860
-
Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration
-
Jadhav G.S., Ghangrekar M.M. Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresour. Technol. 2009, 100:717-723.
-
(2009)
Bioresour. Technol.
, vol.100
, pp. 717-723
-
-
Jadhav, G.S.1
Ghangrekar, M.M.2
-
51
-
-
58549088469
-
Effect of anodic pH microenvironment on microbial fuel cell (MFC) performance in concurrence with aerated and ferricyanide catholytes
-
Raghavulu S.V., Mohan S.V., Goud R.K., Sarma P.N. Effect of anodic pH microenvironment on microbial fuel cell (MFC) performance in concurrence with aerated and ferricyanide catholytes. Electrochem. Commun. 2009, 11:371-375.
-
(2009)
Electrochem. Commun.
, vol.11
, pp. 371-375
-
-
Raghavulu, S.V.1
Mohan, S.V.2
Goud, R.K.3
Sarma, P.N.4
-
52
-
-
60549096841
-
Increased power from a two-chamber microbial fuel cell with a low-pH air-cathode compartment
-
Erable B., Etcheverry L., Bergel A. Increased power from a two-chamber microbial fuel cell with a low-pH air-cathode compartment. Electrochem. Commun. 2009, 11:619-622.
-
(2009)
Electrochem. Commun.
, vol.11
, pp. 619-622
-
-
Erable, B.1
Etcheverry, L.2
Bergel, A.3
-
53
-
-
67650263418
-
Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH
-
Behera M., Ghangrekar M.M. Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH. Bioresour. Technol. 2009, 100:5114-5121.
-
(2009)
Bioresour. Technol.
, vol.100
, pp. 5114-5121
-
-
Behera, M.1
Ghangrekar, M.M.2
-
54
-
-
76049116695
-
Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode
-
Zhuang L., Zhou S., Li Y., Yuan Y. Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode. Bioresour. Technol. 2010, 101:3514-3519.
-
(2010)
Bioresour. Technol.
, vol.101
, pp. 3514-3519
-
-
Zhuang, L.1
Zhou, S.2
Li, Y.3
Yuan, Y.4
-
55
-
-
79952814680
-
The overshoot phenomenon as a function of internal resistance in microbial fuel cells
-
Winfield J., Ieropoulos I., Greenman J., Dennis J. The overshoot phenomenon as a function of internal resistance in microbial fuel cells. Bioelectrochemistry 2011, 81:22-27.
-
(2011)
Bioelectrochemistry
, vol.81
, pp. 22-27
-
-
Winfield, J.1
Ieropoulos, I.2
Greenman, J.3
Dennis, J.4
-
56
-
-
54549105196
-
Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell
-
He Z., Huang Y., Manohar A.K., Mansfeld F. Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell. Bioelectrochemistry 2008, 74:78-82.
-
(2008)
Bioelectrochemistry
, vol.74
, pp. 78-82
-
-
He, Z.1
Huang, Y.2
Manohar, A.K.3
Mansfeld, F.4
-
57
-
-
77956171795
-
Effect of pH on nutrient dynamics and electricity production using microbial fuel cells
-
Puig S., Serra M., Coma M., Cabré M., Balaguer M.D., Colprim J. Effect of pH on nutrient dynamics and electricity production using microbial fuel cells. Bioresour. Technol. 2010, 101:9594-9599.
-
(2010)
Bioresour. Technol.
, vol.101
, pp. 9594-9599
-
-
Puig, S.1
Serra, M.2
Coma, M.3
Cabré, M.4
Balaguer, M.D.5
Colprim, J.6
-
58
-
-
80051663652
-
Influences of initial pH on performance and anodic microbes of fed-batch microbial fuel cells
-
Zhang L., Li C., Ding L., Xu K., Ren H. Influences of initial pH on performance and anodic microbes of fed-batch microbial fuel cells. J. Chem. Technol. Biotechnol. 2011, 86:1226-1232.
-
(2011)
J. Chem. Technol. Biotechnol.
, vol.86
, pp. 1226-1232
-
-
Zhang, L.1
Li, C.2
Ding, L.3
Xu, K.4
Ren, H.5
-
59
-
-
79956366439
-
Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells
-
Yuan Y., Zhao B., Zhou S., Zhong S., Zhuang L. Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells. Bioresour. Technol. 2011, 102:6887-6891.
-
(2011)
Bioresour. Technol.
, vol.102
, pp. 6887-6891
-
-
Yuan, Y.1
Zhao, B.2
Zhou, S.3
Zhong, S.4
Zhuang, L.5
-
60
-
-
80052739603
-
Electroactive mixed culture derived biofilms in microbial bioelectrochemical systems: the role of pH on biofilm formation, performance and composition
-
Patil S.A., Harnisch F., Koch C., Hübschmann T., Fetzer I., Carmona-Martínez A.A., Müller S., Schröder U. Electroactive mixed culture derived biofilms in microbial bioelectrochemical systems: the role of pH on biofilm formation, performance and composition. Bioresour. Technol. 2011, 102:6887-6891.
-
(2011)
Bioresour. Technol.
, vol.102
, pp. 6887-6891
-
-
Patil, S.A.1
Harnisch, F.2
Koch, C.3
Hübschmann, T.4
Fetzer, I.5
Carmona-Martínez, A.A.6
Müller, S.7
Schröder, U.8
-
61
-
-
80054691404
-
Impedance characteristics and polarization behavior of a microbial fuel cell in response to short-term changes in medium pH
-
Jung S., Mench M.M., Regan J.M. Impedance characteristics and polarization behavior of a microbial fuel cell in response to short-term changes in medium pH. Environ. Sci. Technol. 2011, 45:9069-9074.
-
(2011)
Environ. Sci. Technol.
, vol.45
, pp. 9069-9074
-
-
Jung, S.1
Mench, M.M.2
Regan, J.M.3
-
62
-
-
80051592257
-
Microbial fuel cell of Enterobacter cloacae: effect of anodic pH microenvironment on current, power density, internal resistance and electrochemical losses
-
Nimje V.R., Chen C.Y., Chen C.C., Tsai J.Y., Chen H.R., Huang Y.M., Jean J.S., Chang Y.F., Shih R.C. Microbial fuel cell of Enterobacter cloacae: effect of anodic pH microenvironment on current, power density, internal resistance and electrochemical losses. Int. J. Hydrogen Energy 2011, 36:11093-11101.
-
(2011)
Int. J. Hydrogen Energy
, vol.36
, pp. 11093-11101
-
-
Nimje, V.R.1
Chen, C.Y.2
Chen, C.C.3
Tsai, J.Y.4
Chen, H.R.5
Huang, Y.M.6
Jean, J.S.7
Chang, Y.F.8
Shih, R.C.9
-
63
-
-
68349141657
-
Behaviour of single chambered mediatorless microbial fuel cell (MFC) at acidophilic, neutral and alkaline microenvironments during chemical wastewater treatment
-
Raghavulu S.V., Mohan S.V., Reddy M.V., Mohanakrishna G., Sarma P.N. Behaviour of single chambered mediatorless microbial fuel cell (MFC) at acidophilic, neutral and alkaline microenvironments during chemical wastewater treatment. Int. J. Hydrogen Energy 2009, 34:7547-7554.
-
(2009)
Int. J. Hydrogen Energy
, vol.34
, pp. 7547-7554
-
-
Raghavulu, S.V.1
Mohan, S.V.2
Reddy, M.V.3
Mohanakrishna, G.4
Sarma, P.N.5
-
64
-
-
77955425014
-
The influence of operational conditions on the performance of a microbial fuel cell seeded with mesophilic anaerobic sludge
-
Martin E., Savadogo O., Guiot S.R., Tartakovsky B. The influence of operational conditions on the performance of a microbial fuel cell seeded with mesophilic anaerobic sludge. Biochem. Eng. J. 2010, 51:132-139.
-
(2010)
Biochem. Eng. J.
, vol.51
, pp. 132-139
-
-
Martin, E.1
Savadogo, O.2
Guiot, S.R.3
Tartakovsky, B.4
-
65
-
-
75349088069
-
Anodophilic biofilm catalyzes cathodic oxygen reduction
-
Cheng K.Y., Ho G., Ruwisch R.C. Anodophilic biofilm catalyzes cathodic oxygen reduction. Environ. Sci. Technol. 2010, 44:518-525.
-
(2010)
Environ. Sci. Technol.
, vol.44
, pp. 518-525
-
-
Cheng, K.Y.1
Ho, G.2
Ruwisch, R.C.3
-
66
-
-
33847607418
-
Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells
-
Cheng S., Logan B.E. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem. Commun. 2007, 9:492-496.
-
(2007)
Electrochem. Commun.
, vol.9
, pp. 492-496
-
-
Cheng, S.1
Logan, B.E.2
-
67
-
-
36849008648
-
Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms
-
Fan Y., Hu H.Q., Liu H. Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environ. Sci. Technol. 2007, 41:8154-8158.
-
(2007)
Environ. Sci. Technol.
, vol.41
, pp. 8154-8158
-
-
Fan, Y.1
Hu, H.Q.2
Liu, H.3
-
68
-
-
33846842443
-
Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells
-
Kim J.R., Cheng S., Oh S.E., Logan B. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ. Sci. Technol. 2007, 41:1004-1009.
-
(2007)
Environ. Sci. Technol.
, vol.41
, pp. 1004-1009
-
-
Kim, J.R.1
Cheng, S.2
Oh, S.E.3
Logan, B.4
-
69
-
-
34548451055
-
Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration
-
Fan Y., Hu H., Liu H. Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J. Power Sources 2007, 171:348-354.
-
(2007)
J. Power Sources
, vol.171
, pp. 348-354
-
-
Fan, Y.1
Hu, H.2
Liu, H.3
-
70
-
-
44949106443
-
Importance of temperature and anodic medium composition on microbial fuel cell (MFC) performance
-
Min B., Román O.B., Angelidaki I. Importance of temperature and anodic medium composition on microbial fuel cell (MFC) performance. Biotechnol. Lett. 2008, 30:1213-1218.
-
(2008)
Biotechnol. Lett.
, vol.30
, pp. 1213-1218
-
-
Min, B.1
Román, O.B.2
Angelidaki, I.3
-
71
-
-
79959248642
-
Influence of buffer solutions on the performance of microbial fuel cell electricity generation
-
Qiang L., Yuan L.J., Ding Q. Influence of buffer solutions on the performance of microbial fuel cell electricity generation. Huanjing Kexue/Environ. Sci. 2011, 32:1524-1528.
-
(2011)
Huanjing Kexue/Environ. Sci.
, vol.32
, pp. 1524-1528
-
-
Qiang, L.1
Yuan, L.J.2
Ding, Q.3
-
72
-
-
71849092516
-
Variation of power generation at different buffer types and conductivities in single chamber microbial fuel cells
-
Nam J.Y., Kim H.W., Lim K.H., Shin H.S., Logan B.E. Variation of power generation at different buffer types and conductivities in single chamber microbial fuel cells. Biosens. Bioelectron. 2010, 25:1155-1159.
-
(2010)
Biosens. Bioelectron.
, vol.25
, pp. 1155-1159
-
-
Nam, J.Y.1
Kim, H.W.2
Lim, K.H.3
Shin, H.S.4
Logan, B.E.5
-
73
-
-
57449121631
-
- carriers for decreasing the pH gradient between cathode and anode in biological fuel cells
-
- carriers for decreasing the pH gradient between cathode and anode in biological fuel cells. Environ. Sci. Technol. 2008, 42:8773-8777.
-
(2008)
Environ. Sci. Technol.
, vol.42
, pp. 8773-8777
-
-
Torres, C.I.1
Lee, H.S.2
Rittmann, B.E.3
-
74
-
-
77950440326
-
Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity
-
Fornero J.J., Rosenbaum M., Cotta M.A., Angenet L.T. Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity. Environ. Sci. Technol. 2010, 44:2728-2734.
-
(2010)
Environ. Sci. Technol.
, vol.44
, pp. 2728-2734
-
-
Fornero, J.J.1
Rosenbaum, M.2
Cotta, M.A.3
Angenet, L.T.4
-
75
-
-
57149106180
-
Effect of temperature on performance of microbial fuel cell using beer wastewater
-
Wang X., Feng Y.J., Qu Y.P., Li D.M., Li H., Ren N.Q. Effect of temperature on performance of microbial fuel cell using beer wastewater. Huanjing Kexue/Environ. Sci. 2008, 29:3128-3132.
-
(2008)
Huanjing Kexue/Environ. Sci.
, vol.29
, pp. 3128-3132
-
-
Wang, X.1
Feng, Y.J.2
Qu, Y.P.3
Li, D.M.4
Li, H.5
Ren, N.Q.6
-
76
-
-
62949204754
-
Experimental evaluation of influential factors for electricity harvesting from sediment using microbial fuel cell
-
Hong S.W., Chang I.S., Choi Y.S., Chung T.H. Experimental evaluation of influential factors for electricity harvesting from sediment using microbial fuel cell. Bioresour. Technol. 2009, 100:3029-3035.
-
(2009)
Bioresour. Technol.
, vol.100
, pp. 3029-3035
-
-
Hong, S.W.1
Chang, I.S.2
Choi, Y.S.3
Chung, T.H.4
-
77
-
-
70349428300
-
Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures
-
Ahn Y., Logan B.E. Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresour. Technol. 2010, 101:469-475.
-
(2010)
Bioresour. Technol.
, vol.101
, pp. 469-475
-
-
Ahn, Y.1
Logan, B.E.2
-
78
-
-
77956618234
-
Effect of temperature on the performance of microbial fuel cells
-
Guerrero A.L., Scott K., Head I.M., Mateo F., Ginesta A., Godinez C. Effect of temperature on the performance of microbial fuel cells. Fuel 2010, 89:3985-3994.
-
(2010)
Fuel
, vol.89
, pp. 3985-3994
-
-
Guerrero, A.L.1
Scott, K.2
Head, I.M.3
Mateo, F.4
Ginesta, A.5
Godinez, C.6
-
79
-
-
77956925968
-
Electroactive mixed culture biofilms in microbial bioelectrochemical systems: the role of temperature for biofilm formation and performance
-
Patil S.A., Harnisch F., Kapadnis B., Schröder U. Electroactive mixed culture biofilms in microbial bioelectrochemical systems: the role of temperature for biofilm formation and performance. Biosens. Bioelectron. 2010, 26:803-808.
-
(2010)
Biosens. Bioelectron.
, vol.26
, pp. 803-808
-
-
Patil, S.A.1
Harnisch, F.2
Kapadnis, B.3
Schröder, U.4
-
80
-
-
79551537593
-
Effect of temperature on the catalytic ability of electrochemically active biofilm as anode catalyst in microbial fuel cells
-
Liu Y., Climent V., Berná A., Feliu J.M. Effect of temperature on the catalytic ability of electrochemically active biofilm as anode catalyst in microbial fuel cells. Electroanalysis 2011, 23:387-394.
-
(2011)
Electroanalysis
, vol.23
, pp. 387-394
-
-
Liu, Y.1
Climent, V.2
Berná, A.3
Feliu, J.M.4
-
81
-
-
80052055384
-
Effect of operating temperature on performance of microbial fuel cell
-
Behera M., Murthy S.S.R., Ghangrekar M.M. Effect of operating temperature on performance of microbial fuel cell. Water Sci. Technol. 2011, 64:917-922.
-
(2011)
Water Sci. Technol.
, vol.64
, pp. 917-922
-
-
Behera, M.1
Murthy, S.S.R.2
Ghangrekar, M.M.3
-
82
-
-
79751475174
-
Acclimation stage on the performance of microbial fuel cells subjected to variation in COD, temperature, and electron acceptor
-
Wang X.L., Wu C., Zhang J.Q., Chi Q.L., Tian S.S. Acclimation stage on the performance of microbial fuel cells subjected to variation in COD, temperature, and electron acceptor. Adv. Mater. Res. 2011, 183-185:2346-2350.
-
(2011)
Adv. Mater. Res.
, pp. 2346-2350
-
-
Wang, X.L.1
Wu, C.2
Zhang, J.Q.3
Chi, Q.L.4
Tian, S.S.5
-
83
-
-
82455210853
-
Operational temperature regulates anodic biofilm growth and the development of electrogenic activity
-
Michie I.S., Kim J.R., Dinsdale R.M., Guwy A.J., Premier G.C. Operational temperature regulates anodic biofilm growth and the development of electrogenic activity. Appl. Microbiol. Biotechnol. 2011, 92:419-430.
-
(2011)
Appl. Microbiol. Biotechnol.
, vol.92
, pp. 419-430
-
-
Michie, I.S.1
Kim, J.R.2
Dinsdale, R.M.3
Guwy, A.J.4
Premier, G.C.5
-
84
-
-
84455204069
-
Effect of temperature on electricity generation of single-chamber microbial fuel cells with proton exchange membrane
-
Tang Y., He Y., Yu P., Sun H., Fu J. Effect of temperature on electricity generation of single-chamber microbial fuel cells with proton exchange membrane. Adv. Mater. Res. 2012, 393-395:1169-1172.
-
(2012)
Adv. Mater. Res.
, pp. 1169-1172
-
-
Tang, Y.1
He, Y.2
Yu, P.3
Sun, H.4
Fu, J.5
-
85
-
-
84863240047
-
Operating characteristics of microbial fuel cell using sludge
-
Liu Z.H., Li X.M., Zheng F.L., Yang Q. Operating characteristics of microbial fuel cell using sludge. China Environ. Sci. 2012, 32:268-273.
-
(2012)
China Environ. Sci.
, vol.32
, pp. 268-273
-
-
Liu, Z.H.1
Li, X.M.2
Zheng, F.L.3
Yang, Q.4
-
86
-
-
84869888714
-
Short-term effects of temperature and COD in a microbial fuel cell
-
Campo A.G., Lobato J., Cañizares P., Rodrigo M.A., Morales F.J.F. Short-term effects of temperature and COD in a microbial fuel cell. Appl. Energy 2012, 10.1016/j.apenergy.2012.02.064.
-
(2012)
Appl. Energy
-
-
Campo, A.G.1
Lobato, J.2
Cañizares, P.3
Rodrigo, M.A.4
Morales, F.J.F.5
-
87
-
-
79955406822
-
Internal resistance and performance of microbial fuel cells: influence of cell configuration and temperature
-
Larios A.L.V, Feria O.S., Huerta G.V., Leal E.R., Seijas N.R., Varaldo H.M.P. Internal resistance and performance of microbial fuel cells: influence of cell configuration and temperature. J. New Mater. Electrochem. Syst. 2011, 14:99-105.
-
(2011)
J. New Mater. Electrochem. Syst.
, vol.14
, pp. 99-105
-
-
Larios, A.L.V.1
Feria, O.S.2
Huerta, G.V.3
Leal, E.R.4
Seijas, N.R.5
Varaldo, H.M.P.6
-
88
-
-
79952420550
-
The influence of psychrophilic and mesophilic start-up temperature on microbial fuel cell system performance
-
Michie I.S., Kim J.R., Dinsdale R.M., Guwy A.J., Premier G.C. The influence of psychrophilic and mesophilic start-up temperature on microbial fuel cell system performance. Environ. Sci. Technol. 2011, 4:1011-1019.
-
(2011)
Environ. Sci. Technol.
, vol.4
, pp. 1011-1019
-
-
Michie, I.S.1
Kim, J.R.2
Dinsdale, R.M.3
Guwy, A.J.4
Premier, G.C.5
-
89
-
-
78650608282
-
Electricity generation of single-chamber microbial fuel cells at low temperatures
-
Cheng S., Xing D., Logan B.E. Electricity generation of single-chamber microbial fuel cells at low temperatures. Biosens. Bioelectron. 2011, 26:1913-1917.
-
(2011)
Biosens. Bioelectron.
, vol.26
, pp. 1913-1917
-
-
Cheng, S.1
Xing, D.2
Logan, B.E.3
-
90
-
-
84866443770
-
Anodic biofilm in single-chamber microbial fuel cells cultivated under different temperatures
-
Liu L., Tsyganova O., Lee D.J., Suc A., Chang J.S., Wang A., Ren N. Anodic biofilm in single-chamber microbial fuel cells cultivated under different temperatures. Int. J. Hydrogen Energy 2012, 10.1016/j.ijhydene.2012.03.084.
-
(2012)
Int. J. Hydrogen Energy
-
-
Liu, L.1
Tsyganova, O.2
Lee, D.J.3
Suc, A.4
Chang, J.S.5
Wang, A.6
Ren, N.7
-
91
-
-
78650269080
-
Low temperature performance of microbial fuel cells
-
Guerrero A.L., Scott K., Head I.M., Mateo F., Ginestá A., Fernández F.J.H., Godínez C. Low temperature performance of microbial fuel cells. Chem. Eng. Trans. 2010, 21:463-468.
-
(2010)
Chem. Eng. Trans.
, vol.21
, pp. 463-468
-
-
Guerrero, A.L.1
Scott, K.2
Head, I.M.3
Mateo, F.4
Ginestá, A.5
Fernández, F.J.H.6
Godínez, C.7
-
92
-
-
34447333104
-
Bioelectricity production by mediatorless microbial fuel cell under acidophilic condition using wastewater as substrate: influence of substrate loading rate
-
Mohan S.V., Raghavulu S.V., Srikanth S., Sarma P.N. Bioelectricity production by mediatorless microbial fuel cell under acidophilic condition using wastewater as substrate: influence of substrate loading rate. Curr. Sci. 2007, 92:1720-1726.
-
(2007)
Curr. Sci.
, vol.92
, pp. 1720-1726
-
-
Mohan, S.V.1
Raghavulu, S.V.2
Srikanth, S.3
Sarma, P.N.4
-
93
-
-
50349093076
-
Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes
-
Aelterman P., Versichele M., Marzorati M., Boon N., Verstraete W. Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes. Bioresour. Technol. 2008, 99:8895-8902.
-
(2008)
Bioresour. Technol.
, vol.99
, pp. 8895-8902
-
-
Aelterman, P.1
Versichele, M.2
Marzorati, M.3
Boon, N.4
Verstraete, W.5
-
94
-
-
60349105605
-
Integrated function of microbial fuel cell (MFC) as bioelectrochemical treatment system associated with bioelectricity generation under higher substrate load
-
Mohan S.V., Raghavulu S.V., Peri D., Sarma P.N. Integrated function of microbial fuel cell (MFC) as bioelectrochemical treatment system associated with bioelectricity generation under higher substrate load. Biosens. Bioelectron. 2009, 24:2021-2027.
-
(2009)
Biosens. Bioelectron.
, vol.24
, pp. 2021-2027
-
-
Mohan, S.V.1
Raghavulu, S.V.2
Peri, D.3
Sarma, P.N.4
-
95
-
-
72049115228
-
Effect of increasing anode surface area on the performance of a single chamber microbial fuel cell
-
Lorenzo M.D., Scott K., Curtis T.P., Head I.M. Effect of increasing anode surface area on the performance of a single chamber microbial fuel cell. Chem. Eng. J. 2010, 156:40-48.
-
(2010)
Chem. Eng. J.
, vol.156
, pp. 40-48
-
-
Lorenzo, M.D.1
Scott, K.2
Curtis, T.P.3
Head, I.M.4
-
96
-
-
74449090365
-
Phosphatase and dehydrogenase activities in anodic chamber of single chamber microbial fuel cell (MFC) at variable substrate loading conditions
-
Reddy M.V., Srikanth S., Mohan S.V., Sarma P.N. Phosphatase and dehydrogenase activities in anodic chamber of single chamber microbial fuel cell (MFC) at variable substrate loading conditions. Bioelectrochemistry 2010, 77:125-132.
-
(2010)
Bioelectrochemistry
, vol.77
, pp. 125-132
-
-
Reddy, M.V.1
Srikanth, S.2
Mohan, S.V.3
Sarma, P.N.4
-
97
-
-
71049186062
-
Modular tubular microbial fuel cells for energy recovery during sucrose wastewater treatment at low organic loading rate
-
Kim J.R., Premier G.C., Hawkes F.R., Rodríguez J., Dinsdale R.M., Guwy A.J. Modular tubular microbial fuel cells for energy recovery during sucrose wastewater treatment at low organic loading rate. Bioresour. Technol. 2010, 101:1190-1198.
-
(2010)
Bioresour. Technol.
, vol.101
, pp. 1190-1198
-
-
Kim, J.R.1
Premier, G.C.2
Hawkes, F.R.3
Rodríguez, J.4
Dinsdale, R.M.5
Guwy, A.J.6
-
98
-
-
70350053299
-
Effects of organic loading rates on the continuous electricity generation from fermented wastewater using a single-chamber microbial fuel cell
-
Nam J.Y., Kim H.W., Lim K.H., Shin H.S. Effects of organic loading rates on the continuous electricity generation from fermented wastewater using a single-chamber microbial fuel cell. Bioresour. Technol. 2010, 101:S33-S37.
-
(2010)
Bioresour. Technol.
, vol.101
-
-
Nam, J.Y.1
Kim, H.W.2
Lim, K.H.3
Shin, H.S.4
-
99
-
-
80053202393
-
Effects of microbial species, organic loading and substrate degradation rate on the power generation capability of microbial fuel cells
-
Juang D.F., Yang P.C., Chou H.Y., Chiu L.J. Effects of microbial species, organic loading and substrate degradation rate on the power generation capability of microbial fuel cells. Biotechnol. Lett. 2011, 33:2147-2160.
-
(2011)
Biotechnol. Lett.
, vol.33
, pp. 2147-2160
-
-
Juang, D.F.1
Yang, P.C.2
Chou, H.Y.3
Chiu, L.J.4
-
100
-
-
79955477732
-
Canteen based composite food waste as potential anodic fuel for bioelectricity generation in single chambered microbial fuel cell (MFC): bio-electrochemical evaluation under increasing substrate loading condition
-
Goud R.K., Babu P.S., Mohan S.V. Canteen based composite food waste as potential anodic fuel for bioelectricity generation in single chambered microbial fuel cell (MFC): bio-electrochemical evaluation under increasing substrate loading condition. Int. J. Hydrogen Energy 2011, 36:6210-6218.
-
(2011)
Int. J. Hydrogen Energy
, vol.36
, pp. 6210-6218
-
-
Goud, R.K.1
Babu, P.S.2
Mohan, S.V.3
-
101
-
-
84858291145
-
Electrogenic activity and electron losses under increasing organic load of recalcitrant pharmaceutical wastewater
-
doi:10.1016/j.ijhydene.2011.12.112.
-
Velvizhi G., Mohan S.V. Electrogenic activity and electron losses under increasing organic load of recalcitrant pharmaceutical wastewater. Int. J. Hydrogen Energy 2012, doi:10.1016/j.ijhydene.2011.12.112.
-
(2012)
Int. J. Hydrogen Energy
-
-
Velvizhi, G.1
Mohan, S.V.2
-
102
-
-
26044444072
-
Residence time distribution in microbial fuel cell and its influence on COD removal with electricity generation
-
Moon H., Chang I.S., Jang J.K., Kim B.H. Residence time distribution in microbial fuel cell and its influence on COD removal with electricity generation. Biochem. Eng. J. 2005, 27:59-65.
-
(2005)
Biochem. Eng. J.
, vol.27
, pp. 59-65
-
-
Moon, H.1
Chang, I.S.2
Jang, J.K.3
Kim, B.H.4
-
103
-
-
0035203928
-
Influence of the hydrodynamics on the biofilm formation by mass transport analysis
-
Guillou D.H., Tribollet B., Festy D. Influence of the hydrodynamics on the biofilm formation by mass transport analysis. Bioelectrochemistry 2000, 53:119-125.
-
(2000)
Bioelectrochemistry
, vol.53
, pp. 119-125
-
-
Guillou, D.H.1
Tribollet, B.2
Festy, D.3
-
104
-
-
10444290565
-
Shear rate moderates community diversity in freshwater biofilms
-
Rickard A.H., McBain A.J., Stead A.T., Gilbert P. Shear rate moderates community diversity in freshwater biofilms. Appl. Environ. Microbiol. 2004, 70:7426-7435.
-
(2004)
Appl. Environ. Microbiol.
, vol.70
, pp. 7426-7435
-
-
Rickard, A.H.1
McBain, A.J.2
Stead, A.T.3
Gilbert, P.4
-
105
-
-
60349123520
-
High shear enrichment improves the performance of the anodophilic microbial consortium in a microbial fuel cell
-
Pham H.T., Boon N., Aelterman P., Clauwaert P., Schamphelaire L.D., Oostveldt P., Verbeken K., Rabaey K., Verstraete W. High shear enrichment improves the performance of the anodophilic microbial consortium in a microbial fuel cell. Microb. Biotechnol. 2008, 6:487-496.
-
(2008)
Microb. Biotechnol.
, vol.6
, pp. 487-496
-
-
Pham, H.T.1
Boon, N.2
Aelterman, P.3
Clauwaert, P.4
Schamphelaire, L.D.5
Oostveldt, P.6
Verbeken, K.7
Rabaey, K.8
Verstraete, W.9
-
106
-
-
57049106800
-
Role of shear stress on composition, diversity and dynamics of biofilm bacterial communities
-
Alice Rochex A., Godon J.-J., Bernet N., Escudie R. Role of shear stress on composition, diversity and dynamics of biofilm bacterial communities. Water Res. 2008, 42:4915-4922.
-
(2008)
Water Res.
, vol.42
, pp. 4915-4922
-
-
Alice Rochex, A.1
Godon, J.-J.2
Bernet, N.3
Escudie, R.4
-
107
-
-
77952043068
-
Assessment of the effects of flow rate and ionic strength on the performance of an air-cathode microbial fuel cell using electrochemical impedance spectroscopy
-
Aaron D., Tsouris C., Hamilton C.Y., Borole A.P. Assessment of the effects of flow rate and ionic strength on the performance of an air-cathode microbial fuel cell using electrochemical impedance spectroscopy. Energies 2010, 3:592-606.
-
(2010)
Energies
, vol.3
, pp. 592-606
-
-
Aaron, D.1
Tsouris, C.2
Hamilton, C.Y.3
Borole, A.P.4
-
108
-
-
84859955174
-
Effects of flow rate and chemical oxygen demand removal characteristics on power generation performance of microbial fuel cells
-
Juang D.F., Yang P.C., Kuo T.H. Effects of flow rate and chemical oxygen demand removal characteristics on power generation performance of microbial fuel cells. Int. J. Environ. Sci. Technol. 2012, 9:267-280.
-
(2012)
Int. J. Environ. Sci. Technol.
, vol.9
, pp. 267-280
-
-
Juang, D.F.1
Yang, P.C.2
Kuo, T.H.3
-
109
-
-
76049106291
-
Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells
-
Ieropoulos I., Winfield J., Greenman J. Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells. Bioresour. Technol. 2010, 101:3520-3525.
-
(2010)
Bioresour. Technol.
, vol.101
, pp. 3520-3525
-
-
Ieropoulos, I.1
Winfield, J.2
Greenman, J.3
-
110
-
-
2442713124
-
A review of mathematical models for hydrogen and direct methanol polymer electrolyte membrane fuel cells
-
Yao K.Z., Karan K., McAuley K.B., Oosthuizen P., Peppley B., Xie T. A review of mathematical models for hydrogen and direct methanol polymer electrolyte membrane fuel cells. Fuel Cells 2004, 4:3-29.
-
(2004)
Fuel Cells
, vol.4
, pp. 3-29
-
-
Yao, K.Z.1
Karan, K.2
McAuley, K.B.3
Oosthuizen, P.4
Peppley, B.5
Xie, T.6
-
111
-
-
33846584040
-
A comparative study of approaches to direct methanol fuel cells modeling
-
Oliveira V.B., Falcão D.S., Rangel C.M., Pinto A.M.F.R. A comparative study of approaches to direct methanol fuel cells modeling. Int. J. Hydrogen Energy 2007, 32:415-424.
-
(2007)
Int. J. Hydrogen Energy
, vol.32
, pp. 415-424
-
-
Oliveira, V.B.1
Falcão, D.S.2
Rangel, C.M.3
Pinto, A.M.F.R.4
-
112
-
-
0029113410
-
Modelling of a microbial fuel cell process
-
Zhang X.C., Halme A. Modelling of a microbial fuel cell process. Biotechnol. Lett. 1995, 17:809-814.
-
(1995)
Biotechnol. Lett.
, vol.17
, pp. 809-814
-
-
Zhang, X.C.1
Halme, A.2
-
113
-
-
36749093442
-
Conduction-based modeling of the biofilm anode of a microbial fuel cell
-
Marcus A.K., Torres C.I., Rittman B.E. Conduction-based modeling of the biofilm anode of a microbial fuel cell. Biotechnol. Bioeng. 2007, 98:1171-1182.
-
(2007)
Biotechnol. Bioeng.
, vol.98
, pp. 1171-1182
-
-
Marcus, A.K.1
Torres, C.I.2
Rittman, B.E.3
-
114
-
-
34250022204
-
A computational model for biofilm-based microbial fuel cells
-
Picioreanu C., Head I.M., Katuri K.P., van Loosdrecht M.C.M., Scott K. A computational model for biofilm-based microbial fuel cells. Water Res. 2007, 41:2921-2940.
-
(2007)
Water Res.
, vol.41
, pp. 2921-2940
-
-
Picioreanu, C.1
Head, I.M.2
Katuri, K.P.3
van Loosdrecht, M.C.M.4
Scott, K.5
-
115
-
-
43949144944
-
Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion
-
Picioreanu C., Head I.M., Katuri K.P., van Loosdrecht M.C.M., Scott K. Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion. Water Sci. Technol. 2008, 57:965-971.
-
(2008)
Water Sci. Technol.
, vol.57
, pp. 965-971
-
-
Picioreanu, C.1
Head, I.M.2
Katuri, K.P.3
van Loosdrecht, M.C.M.4
Scott, K.5
-
116
-
-
77649237402
-
Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance
-
Picioreanu C., van Loosdrecht M.C.M., Curtis T.P., Scott K. Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance. Bioelectrochemistry 2010, 78:8-24.
-
(2010)
Bioelectrochemistry
, vol.78
, pp. 8-24
-
-
Picioreanu, C.1
van Loosdrecht, M.C.M.2
Curtis, T.P.3
Scott, K.4
-
117
-
-
66149189097
-
Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater
-
Wen Q., Wu Y., Cao D., Zhao L., Sun Q. Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater. Bioresour. Technol. 2009, 100:4171-4175.
-
(2009)
Bioresour. Technol.
, vol.100
, pp. 4171-4175
-
-
Wen, Q.1
Wu, Y.2
Cao, D.3
Zhao, L.4
Sun, Q.5
-
118
-
-
69549088017
-
Modelling and simulation of two-chamber microbial fuel cell
-
Zeng Y., Choo Y.F., Kim B.H., Wu P. Modelling and simulation of two-chamber microbial fuel cell. J. Power Sources 2010, 195:79-89.
-
(2010)
J. Power Sources
, vol.195
, pp. 79-89
-
-
Zeng, Y.1
Choo, Y.F.2
Kim, B.H.3
Wu, P.4
-
119
-
-
73349127090
-
Modelling microbial fuel cells with suspended cells and added electron transfer mediator
-
Picioreanu C., Head I.M., Katuri K.P., van Loosdrecht M.C.M., Scott K. Modelling microbial fuel cells with suspended cells and added electron transfer mediator. J. Appl. Electrochem. 2010, 40:151-162.
-
(2010)
J. Appl. Electrochem.
, vol.40
, pp. 151-162
-
-
Picioreanu, C.1
Head, I.M.2
Katuri, K.P.3
van Loosdrecht, M.C.M.4
Scott, K.5
-
120
-
-
77950341486
-
A two-population bio-electrochemical model of a microbial fuel cell
-
Pinto R.P., Srinivasan B., Manuel M.F., Tartakovsky B. A two-population bio-electrochemical model of a microbial fuel cell. Bioresour. Technol. 2010, 101:5256-5265.
-
(2010)
Bioresour. Technol.
, vol.101
, pp. 5256-5265
-
-
Pinto, R.P.1
Srinivasan, B.2
Manuel, M.F.3
Tartakovsky, B.4
-
121
-
-
84862218531
-
Optimizing energy productivity of microbial electrochemical cells
-
Pinto R.P., Tartakovsky B., Srinivasan B. Optimizing energy productivity of microbial electrochemical cells. J. Process Control 2012, 22:1079-1086.
-
(2012)
J. Process Control
, vol.22
, pp. 1079-1086
-
-
Pinto, R.P.1
Tartakovsky, B.2
Srinivasan, B.3
|