-
1
-
-
77949512941
-
Evaluation measures for ordinal regression
-
San Mateo, CA: IEEE Computer Society
-
Baccianella, S., Esuli, A., & Sebastiani, F. (2009). Evaluation measures for ordinal regression. In Proceedings of the Ninth International Conference on Intelligent Systems Design and Applications (pp. 283-287). San Mateo, CA: IEEE Computer Society.
-
(2009)
Proceedings of the Ninth International Conference on Intelligent Systems Design and Applications
, pp. 283-287
-
-
Baccianella, S.1
Esuli, A.2
Sebastiani, F.3
-
2
-
-
27744456721
-
Modelling ordinal relations with SVMs: An application to objective aesthetic evaluation of breast cancer conservative treatment
-
Cardoso, J. S., Pinto da Costa, J. F., & Cardoso, M. J. (2005). Modelling ordinal relations with SVMs: An application to objective aesthetic evaluation of breast cancer conservative treatment. Neural Networks, 18, 808-817.
-
(2005)
Neural Networks
, vol.18
, pp. 808-817
-
-
Cardoso, J.S.1
Pinto da Costa, J.F.2
Cardoso, M.J.3
-
3
-
-
33847626350
-
Support vector ordinal regression
-
Chu, W., & Keerthi, S. S. (2007). Support vector ordinal regression. Neural Computation, 19, 792-815.
-
(2007)
Neural Computation
, vol.19
, pp. 792-815
-
-
Chu, W.1
Keerthi, S.S.2
-
4
-
-
84996565038
-
Learning rate schedules for faster stochastic gradient search
-
Piscataway, NJ: IEEE Press
-
Darken,C., Chang, J.,&Moody, J. (1992). Learning rate schedules for faster stochastic gradient search. In Proceedings of the 1992 IEEEWorkshop: Neural Networks for Signal Processing (pp. 3-12). Piscataway, NJ: IEEE Press.
-
(1992)
Proceedings of the 1992 IEEEWorkshop: Neural Networks for Signal Processing
, pp. 3-12
-
-
Darken, C.1
Chang, J.2
Moody, J.3
-
6
-
-
84948166287
-
Asimple approach to ordinal classification
-
New York: Springer-Verlag. Learning Vector Quantization for Ordinal Classification 2851
-
Frank, E.,&Hall, M. (2001).Asimple approach to ordinal classification. In Proceedings of the 12th European Conference on Machine Learning (pp. 145-156). New York: Springer-Verlag. Learning Vector Quantization for Ordinal Classification 2851
-
(2001)
Proceedings of the 12th European Conference on Machine Learning
, pp. 145-156
-
-
Frank, E.1
Hall, M.2
-
7
-
-
17444390516
-
On the generalization ability of GRLVQ networks
-
Hammer, B., Strickert, M., & Villmann, T. (2005). On the generalization ability of GRLVQ networks. Neural Processing Letters, 21, 109-120.
-
(2005)
Neural Processing Letters
, vol.21
, pp. 109-120
-
-
Hammer, B.1
Strickert, M.2
Villmann, T.3
-
8
-
-
0036791938
-
Generalized relevance learning vector quantization
-
Hammer, B., & Villmann, T. (2002). Generalized relevance learning vector quantization. Neural Networks, 15, 1059-1068.
-
(2002)
Neural Networks
, vol.15
, pp. 1059-1068
-
-
Hammer, B.1
Villmann, T.2
-
9
-
-
84874216885
-
-
UCI repository ofmachine learning databases
-
Hettich, S., Blake, C. L.,&Merz,C. J. (1998). UCI repository ofmachine learning databases. http://archive.ics.uci.edu/ml/
-
(1998)
-
-
Hettich, S.1
Blake, C.L.2
Merz, C.J.3
-
10
-
-
0003505613
-
-
(Tech. Rep. No. TKKF-A601). Espoo, Finland: Laboratory of Computer and Information Science, Department of Technical Physics, Helsinki University of Technology
-
Kohonen, T. (1986). Learning vector quantization for pattern recognition (Tech. Rep. No. TKKF-A601). Espoo, Finland: Laboratory of Computer and Information Science, Department of Technical Physics, Helsinki University of Technology.
-
(1986)
Learning vector quantization for pattern recognition
-
-
Kohonen, T.1
-
12
-
-
39649107920
-
Ordinal regression by extended binary classification
-
In B. Scḧolkopf, J. C. Platt, & T. Hofmann (Eds.), MA: MIT Press
-
Li, L., & Lin, H. (2007). Ordinal regression by extended binary classification. In B. Scḧolkopf, J. C. Platt, & T. Hofmann (Eds.), Advances in neural information processing systems, 19 (pp. 865-872). Cambridge, MA: MIT Press.
-
(2007)
Advances in neural information processing systems Cambridge
, vol.19
, pp. 865-872
-
-
Li, L.1
Lin, H.2
-
13
-
-
84861176005
-
Reduction from cost-sensitive ordinal ranking to weighted binary classification
-
Lin, H., & Li, L. (2012). Reduction from cost-sensitive ordinal ranking to weighted binary classification. Neural Computation, 24, 1329-1367.
-
(2012)
Neural Computation
, vol.24
, pp. 1329-1367
-
-
Lin, H.1
Li, L.2
-
14
-
-
85156210800
-
Generalized learning vector quantization
-
In D. Touretzky, M. Mozer, & M. E. Hasselmo (Eds.), MA: MIT Press
-
Sato, A.,&Yamada,K. (1996).Generalized learning vector quantization. In D. Touretzky, M. Mozer, & M. E. Hasselmo (Eds.) Advances in neural information processing systems, 8 (pp. 423-429). Cambridge, MA: MIT Press.
-
(1996)
Advances in neural information processing systems Cambridge
, vol.8
, pp. 423-429
-
-
Sato, A.1
Yamada, K.2
-
16
-
-
72249111970
-
Adaptive relevance matrices in learning vector quantization
-
Schneider, P., Biehl, M., & Hammer, B. (2009). Adaptive relevance matrices in learning vector quantization. Neural Computation, 21, 3532-3561.
-
(2009)
Neural Computation
, vol.21
, pp. 3532-3561
-
-
Schneider, P.1
Biehl, M.2
Hammer, B.3
-
17
-
-
85156208493
-
Ranking with large margin principle: Two approaches
-
In S. Becker, S. Thr ̈ un, & K. Obermayer (Eds.), MA: MIT Press
-
Shashua, A., & Levin, A. (2002). Ranking with large margin principle: Two approaches. In S. Becker, S. Thr ̈ un, & K. Obermayer (Eds.), Advances in neural information processing systems, 15 (pp. 937-944). Cambridge, MA: MIT Press.
-
(2002)
Advances in neural information processing systems Cambridge
, vol.15
, pp. 937-944
-
-
Shashua, A.1
Levin, A.2
-
18
-
-
77951766869
-
Kernel discriminant learning for ordinal regression
-
Sun, B. Y., Li, J.,Wu, D. D., Zhang, X. M.,&Li,W. B. (2010). Kernel discriminant learning for ordinal regression. IEEE Transactions on Knowledge and Data Engineering, 22, 906-910.
-
(2010)
IEEE Transactions on Knowledge and Data Engineering
, vol.22
, pp. 906-910
-
-
Sun, B.Y.1
Li, J.2
Wu, D.D.3
Zhang, X.M.4
Li, W.B.5
-
19
-
-
38049028338
-
An ensemble of weighted support vector machines for ordinal regression
-
Waegeman, W., & Boullart, L. (2006). An ensemble of weighted support vector machines for ordinal regression. Transactions on Engineering, Computing and Technology, 12, 71-75.
-
(2006)
Transactions on Engineering, Computing and Technology
, vol.12
, pp. 71-75
-
-
Waegeman, W.1
Boullart, L.2
-
20
-
-
84861114745
-
Ordinal regression as multiclass classification
-
Xia, F., Zhou, L., Yang, Y., & Zhang, W. (2007). Ordinal regression as multiclass classification. International Journal of Intelligent Control and Systems, 12, 230-236.
-
(2007)
International Journal of Intelligent Control and Systems
, vol.12
, pp. 230-236
-
-
Xia, F.1
Zhou, L.2
Yang, Y.3
Zhang, W.4
|