-
1
-
-
12244287068
-
-
Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York: ACM
-
Abe, N., Zadrozny, B.,&Langford, J. (2004). An iterativemethod formulti-class costsensitive learning. In Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 3-11). New York: ACM.
-
(2004)
An iterativemethod formulti-class costsensitive learning
, pp. 3-11
-
-
Abe, N.1
Zadrozny, B.2
Langford, J.3
-
2
-
-
56749107535
-
-
Proceedings of the 19th Conference on Algorithmic Learning Theory, Berlin: Springer
-
Agarwal, S. (2008). Generalization bounds for some ordinal regression algorithms. In Proceedings of the 19th Conference on Algorithmic Learning Theory (pp. 7-21). Berlin: Springer.
-
(2008)
Generalization bounds for some ordinal regression algorithms
, pp. 7-21
-
-
Agarwal, S.1
-
4
-
-
84898065480
-
-
Learning Theory: 21st Annual Conference on Learning Theory, Berlin: Springer
-
Ailon, N., & Mohri, M. (2008). An efficient reduction of ranking to classification. In Learning Theory: 21st Annual Conference on Learning Theory (pp. 87-98). Berlin: Springer.
-
(2008)
An efficient reduction of ranking to classification
, pp. 87-98
-
-
Ailon, N.1
Mohri, M.2
-
6
-
-
38049064559
-
-
Learning Theory: 20th Annual Conference on Learning Theory, Berlin: Springer
-
Balcan, M.-F., Bansal, N., Beygelzimer, A., Coppersmith, D., Langford, J., & Sorkin, G. B. (2007). Robust reductions from ranking to classification. In Learning Theory: 20th Annual Conference on Learning Theory (pp. 604-619). Berlin: Springer.
-
(2007)
Robust reductions from ranking to classification
, pp. 604-619
-
-
Balcan, M.-F.1
Bansal, N.2
Beygelzimer, A.3
Coppersmith, D.4
Langford, J.5
Sorkin, G.B.6
-
7
-
-
0002094343
-
Generalization performance of support vector machines and other pattern classifiers
-
B. Schölkopf, C.J.C. Burges, & A. J. Smola (Eds)., Cambridge, MA: MIT Press
-
Bartlett, P. L., & Shawe-Taylor, J. (1998). Generalization performance of support vector machines and other pattern classifiers. In B. Schölkopf, C.J.C. Burges, & A. J. Smola (Eds.), Advances in kernel methods: Support vector learning (pp. 43-54). Cambridge, MA: MIT Press.
-
(1998)
Advances in kernel methods: Support vector learning
, pp. 43-54
-
-
Bartlett, P.L.1
Shawe-Taylor, J.2
-
8
-
-
31844436676
-
-
Machine Learning: Proceedings of the 22nd International Conference, Madison, WI: Omnipress
-
Beygelzimer, A., Daniand, V., Hayes, T., Langford, J., & Zadrozny, B. (2005). Error limiting reductions between classification tasks. In Machine Learning: Proceedings of the 22nd International Conference (pp. 49-56). Madison, WI: Omnipress.
-
(2005)
Error limiting reductions between classification tasks
, pp. 49-56
-
-
Beygelzimer, A.1
Daniand, V.2
Hayes, T.3
Langford, J.4
Zadrozny, B.5
-
10
-
-
34547987951
-
-
Machine Learning: Proceedings of the 24th International Conference, Madison, WI: Omnipress
-
Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., & Li, H. (2007). Learning to rank: From pairwise approach to listwise approach. In Machine Learning: Proceedings of the 24th International Conference (pp. 129-136). Madison, WI: Omnipress.
-
(2007)
Learning to rank: From pairwise approach to listwise approach
, pp. 129-136
-
-
Cao, Z.1
Qin, T.2
Liu, T.-Y.3
Tsai, M.-F.4
Li, H.5
-
11
-
-
34547698831
-
Learning to classify ordinal data: The data replication method
-
Cardoso, J. S., & da Costa, J. F. P. (2007). Learning to classify ordinal data: The data replication method. Journal of Machine Learning Research, 8, 1393-1429.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 1393-1429
-
-
Cardoso, J.S.1
da Costa, J.F.P.2
-
13
-
-
80052902591
-
-
Proceedings of the 24th IEEE Conference on Computer Vision and Pattern Recognition, Piscataway, NJ: IEEE
-
Chang, K.-Y., Chen, C.-S., & Hung, Y.-P. (2011). Ordinal hyperplanes ranker with cost sensitivities for age estimation. In Proceedings of the 24th IEEE Conference on Computer Vision and Pattern Recognition (pp. 585-592). Piscataway, NJ: IEEE.
-
(2011)
Ordinal hyperplanes ranker with cost sensitivities for age estimation
, pp. 585-592
-
-
Chang, K.-Y.1
Chen, C.-S.2
Hung, Y.-P.3
-
15
-
-
33847626350
-
Support vector ordinal regression
-
Chu, W., & Keerthi, S. S. (2007). Support vector ordinal regression. Neural Computation, 19, 792-815.
-
(2007)
Neural Computation
, vol.19
, pp. 792-815
-
-
Chu, W.1
Keerthi, S.S.2
-
17
-
-
14544278410
-
Online ranking by projecting
-
Crammer, K., & Singer, Y. (2005). Online ranking by projecting. Neural Computation, 17, 145-175.
-
(2005)
Neural Computation
, vol.17
, pp. 145-175
-
-
Crammer, K.1
Singer, Y.2
-
18
-
-
44649151128
-
-
Proceedings of the 3rd International Workshop on Mining Complex Data, Berlin: Springer
-
Dembczyński, K., Kotłowski, W., & Słowiński, R. (2008). Ordinal classification with decision rules. In Proceedings of the 3rd International Workshop on Mining Complex Data (pp. 169-181). Berlin: Springer.
-
(2008)
Ordinal classification with decision rules
, pp. 169-181
-
-
Dembczyński, K.1
Kotłowski, W.2
Słowiński, R.3
-
20
-
-
84948166287
-
-
Machine Learning: Proceedings of the 12th European Conference onMachine Learning
-
Frank, E., & Hall, M. (2001). A simple approach to ordinal classification. In Machine Learning: Proceedings of the 12th European Conference onMachine Learning (pp. 145-156).
-
(2001)
A simple approach to ordinal classification
, pp. 145-156
-
-
Frank, E.1
Hall, M.2
-
21
-
-
0033281425
-
Large margin classification using the perceptron algorithm
-
Freund, Y., & Schapire, R. E. (1999). Large margin classification using the perceptron algorithm. Machine Learning, 37(3), 277-296.
-
(1999)
Machine Learning
, vol.37
, Issue.3
, pp. 277-296
-
-
Freund, Y.1
Schapire, R.E.2
-
22
-
-
0034242099
-
Extension of the rough set approach to multicriteria decision support
-
Greco, S., Słowiński, R., &Matarazzo, B. (2000). Extension of the rough set approach to multicriteria decision support. European Journal of Operational Research, 38, 161-195.
-
(2000)
European Journal of Operational Research
, vol.38
, pp. 161-195
-
-
Greco, S.1
Słowiński, R.2
Matarazzo, B.3
-
23
-
-
84869128840
-
Constraint classification:Anew approach to multiclass classification and ranking
-
S. Becker, S. Thrun, & K. Obermayer (Eds.), Cambridge, MA: MIT Press
-
Har-Peled, S., Roth, D.,&Zimak, D. (2003).Constraint classification:Anew approach to multiclass classification and ranking. In S. Becker, S. Thrun, & K. Obermayer (Eds.), Advances in neural information processing systems, 15 (pp. 365-379). Cambridge, MA: MIT Press.
-
(2003)
Advances in neural information processing systems
, vol.15
, pp. 365-379
-
-
Har-Peled, S.1
Roth, D.2
Zimak, D.3
-
24
-
-
0003684449
-
-
Berlin: Springer-Verlag
-
Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning: Data mining, inference, and prediction. Berlin: Springer-Verlag.
-
(2001)
The elements of statistical learning: Data mining, inference, and prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
25
-
-
0008371352
-
Large margin rank boundaries for ordinal regression
-
A. J. Smola, P. Bartlett, B. Schölkopf, & D. Schuurmans (Eds.)
-
Herbrich, R., Graepel, T., & Obermayer, K. (2000). Large margin rank boundaries for ordinal regression. In A. J. Smola, P. Bartlett, B. Schölkopf, & D. Schuurmans (Eds.), Advances in large margin classifiers (pp. 115-132).
-
(2000)
Advances in large margin classifiers
, pp. 115-132
-
-
Herbrich, R.1
Graepel, T.2
Obermayer, K.3
-
27
-
-
84947403595
-
Probability inequalities for sums of bounded random variables
-
Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58(301), 13-30.
-
(1963)
Journal of the American Statistical Association
, vol.58
, Issue.301
, pp. 13-30
-
-
Hoeffding, W.1
-
28
-
-
0027580356
-
Very simple classification rules perform well on most commonly used datasets
-
Holte, R. C. (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11(1), 63-91.
-
(1993)
Machine Learning
, vol.11
, Issue.1
, pp. 63-91
-
-
Holte, R.C.1
-
30
-
-
33749563073
-
-
Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York: ACM
-
Joachims, T. (2006). Training linear SVMs in linear time. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 217-226). New York: ACM.
-
(2006)
Training linear SVMs in linear time
, pp. 217-226
-
-
Joachims, T.1
-
32
-
-
71149093470
-
-
Machine Learning: Proceedings of the 26th International Conference, Berlin: Springer
-
Kotłowski, W., & Słowiński, R. (2009). Rule learning with monotonicity constraints. In Machine Learning: Proceedings of the 26th International Conference (pp. 537-544). Berlin: Springer.
-
(2009)
Rule learning with monotonicity constraints
, pp. 537-544
-
-
Kotłowski, W.1
Słowiński, R.2
-
33
-
-
41549092416
-
-
Proceedings of the 2007 International Joint Conference on Neural Networks, Piscataway, NJ: IEEE
-
Li, L.,&Lin, H.-T. (2007a).Optimizing 0/1 loss for perceptrons by random coordinate descent. In Proceedings of the 2007 International Joint Conference on Neural Networks (pp. 749-754). Piscataway, NJ: IEEE.
-
(2007)
Optimizing 0/1 loss for perceptrons by random coordinate descent
, pp. 749-754
-
-
Li, L.1
Lin, H.-T.2
-
34
-
-
39649107920
-
Ordinal regression by extended binary classification
-
B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Cambridge, MA: MIT Press
-
Li, L.,&Lin, H.-T. (2007b). Ordinal regression by extended binary classification. In B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Advances in neural information processing systems, 19 (pp. 865-872). Cambridge, MA: MIT Press.
-
(2007)
Advances in neural information processing systems
, vol.19
, pp. 865-872
-
-
Li, L.1
Lin, H.-T.2
-
35
-
-
85162006799
-
McRank: Learning to rank using multiple classification and gradient boosting
-
J. C. Platt, D. Koller, Y. Singer, & S. Roweis (Eds.),
-
Li, P., Burges, C., & Wu, Q. (2008). McRank: Learning to rank using multiple classification and gradient boosting. In J. C. Platt, D. Koller, Y. Singer, & S. Roweis (Eds.), Advances in neural information processing systems, 20 (pp. 897-904).
-
(2008)
Advances in neural information processing systems
, vol.20
, pp. 897-904
-
-
Li, P.1
Burges, C.2
Wu, Q.3
-
36
-
-
80052878113
-
-
Unpublished doctoral dissertation, California Institute of Technology
-
Lin, H.-T. (2008). From ordinal ranking to binary classification. Unpublished doctoral dissertation, California Institute of Technology.
-
(2008)
From ordinal ranking to binary classification
-
-
Lin, H.-T.1
-
38
-
-
41549137738
-
Support vector machinery for infinite ensemble learning
-
Lin, H.-T., & Li, L. (2008). Support vector machinery for infinite ensemble learning. Journal of Machine Learning Research, 9, 285-312.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 285-312
-
-
Lin, H.-T.1
Li, L.2
-
41
-
-
0001306637
-
Regression models for ordinal data. Journal of theRoyal Statistical Society
-
McCullagh, P. (1980). Regression models for ordinal data. Journal of theRoyal Statistical Society. Series B, 42, 109-142.
-
(1980)
Series B
, vol.42
, pp. 109-142
-
-
McCullagh, P.1
-
42
-
-
1542276975
-
An introduction to boosting and leveraging
-
O. Bousquet, U. von Luxburg, & G. Rätsch (Eds.), Berlin: Springer
-
Meir, R., & Rätsch, G. (2003). An introduction to boosting and leveraging. In O. Bousquet, U. von Luxburg, & G. Rätsch (Eds.), Advanced Lectures on Machine Learning (pp. 119-184). Berlin: Springer.
-
(2003)
Advanced Lectures on Machine Learning
, pp. 119-184
-
-
Meir, R.1
Rätsch, G.2
-
43
-
-
33744584654
-
Induction of decision trees
-
Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81-106.
-
(1986)
Machine Learning
, vol.1
, Issue.1
, pp. 81-106
-
-
Quinlan, J.R.1
-
44
-
-
9444298517
-
-
Machine Learning: Proceedings of the 14th European Conference on Machine Learning, Berlin: Springer
-
Rajaram, S., Garg, A., Zhou, X. S., & Huang, T. S. (2003). Classification approach towards ranking and sorting problems. In Machine Learning: Proceedings of the 14th European Conference on Machine Learning (pp. 301-312). Berlin: Springer.
-
(2003)
Classification approach towards ranking and sorting problems
, pp. 301-312
-
-
Rajaram, S.1
Garg, A.2
Zhou, X.S.3
Huang, T.S.4
-
47
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
Schapire, R. E., Freund, Y., Bartlett, P. L., & Lee, W. S. (1998). Boosting the margin: A new explanation for the effectiveness of voting methods. Annals of Statistics, 26(5), 1651-1686.
-
(1998)
Annals of Statistics
, vol.26
, Issue.5
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.L.3
Lee, W.S.4
-
48
-
-
0033281701
-
Improved boosting algorithms:Using confidencerated predictions
-
Schapire, R. E.,&Singer, Y. (1999). Improved boosting algorithms:Using confidencerated predictions. Machine Learning, 37(3), 297-336.
-
(1999)
Machine Learning
, vol.37
, Issue.3
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
50
-
-
84899011021
-
Ranking with large margin principle: Two approaches
-
S. Becker, S. Thrun, & K. Obermayer (Eds.), Cambridge, MA: MIT Press
-
Shashua, A., & Levin, A. (2003). Ranking with large margin principle: Two approaches. In S. Becker, S. Thrun, & K. Obermayer (Eds.), Advances in neural information processing systems, 15 (pp. 937-944). Cambridge, MA: MIT Press.
-
(2003)
Advances in neural information processing systems
, vol.15
, pp. 937-944
-
-
Shashua, A.1
Levin, A.2
-
51
-
-
84898968939
-
Monotonic networks
-
M. Jordan, M. Kearns, & S. Solla (Eds.), Cambridge, MA: MIT Press
-
Sill, J. (1998). Monotonic networks. In M. Jordan, M. Kearns, & S. Solla (Eds.), Advances in neural information processing systems, 10 (pp. 661-667). Cambridge, MA: MIT Press.
-
(1998)
Advances in neural information processing systems
, vol.10
, pp. 661-667
-
-
Sill, J.1
-
52
-
-
38049040892
-
-
Proceedings of the International Conference on Rough Sets and Intelligent Systems Paradigms, Berlin: Springer
-
Słowiński, R., Greco, S., & Matarazzo, B. (2007). Dominance-based rough set approach to reasoning about ordinal data. In Proceedings of the International Conference on Rough Sets and Intelligent Systems Paradigms (pp. 5-11). Berlin: Springer.
-
(2007)
Dominance-based rough set approach to reasoning about ordinal data
, pp. 5-11
-
-
Słowiński, R.1
Greco, S.2
Matarazzo, B.3
-
53
-
-
84861128259
-
-
(Tech. Rep.). Taipei: National Taiwan University
-
Tsai, M.-F., Chen, S.-T., Chen, Y.-N., Ferng, C.-S., Wang, C.-H., Wen, T.-Y., et al. (2010). An ensemble ranking solution to the Yahoo! learning to rank challenge (Tech. Rep.). Taipei: National Taiwan University.
-
(2010)
An ensemble ranking solution to the Yahoo! learning to rank challenge
-
-
Tsai, M.-F.1
Chen, S.-T.2
Chen, Y.-N.3
Ferng, C.-S.4
Wang, C.-H.5
Wen, T.-Y.6
-
54
-
-
0021518106
-
A theory of the learnable
-
Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27(11), 1134-1142.
-
(1984)
Communications of the ACM
, vol.27
, Issue.11
, pp. 1134-1142
-
-
Valiant, L.G.1
-
56
-
-
84861114745
-
Ordinal regression as multiclass classification
-
Xia, F., Zhou, L., Yang, Y., & Zhang, W. (2007). Ordinal regression as multiclass classification. International Journal of Intelligent Control and Systems, 12(3), 230-236.
-
(2007)
International Journal of Intelligent Control and Systems
, vol.12
, Issue.3
, pp. 230-236
-
-
Xia, F.1
Zhou, L.2
Yang, Y.3
Zhang, W.4
-
57
-
-
33749245586
-
-
Proceedings of the 3rd IEEE International Conference on Data Mining, Piscataway, NJ: IEEE
-
Zadrozny, B., Langford, J., & Abe, N. (2003). Cost sensitive learning by costproportionate example weighting. In Proceedings of the 3rd IEEE International Conference on Data Mining (pp. 435-442). Piscataway, NJ: IEEE.
-
(2003)
Cost sensitive learning by costproportionate example weighting
, pp. 435-442
-
-
Zadrozny, B.1
Langford, J.2
Abe, N.3
|