메뉴 건너뛰기




Volumn 24, Issue 5, 2012, Pages 1329-1367

Reduction from cost-sensitive ordinal ranking to weighted binary classification

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL NEURAL NETWORK; BIOLOGICAL MODEL; LEARNING; PHYSIOLOGY; STATISTICAL ANALYSIS;

EID: 84861176005     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/NECO_a_00265     Document Type: Article
Times cited : (104)

References (57)
  • 1
    • 12244287068 scopus 로고    scopus 로고
    • Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York: ACM
    • Abe, N., Zadrozny, B.,&Langford, J. (2004). An iterativemethod formulti-class costsensitive learning. In Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 3-11). New York: ACM.
    • (2004) An iterativemethod formulti-class costsensitive learning , pp. 3-11
    • Abe, N.1    Zadrozny, B.2    Langford, J.3
  • 2
    • 56749107535 scopus 로고    scopus 로고
    • Proceedings of the 19th Conference on Algorithmic Learning Theory, Berlin: Springer
    • Agarwal, S. (2008). Generalization bounds for some ordinal regression algorithms. In Proceedings of the 19th Conference on Algorithmic Learning Theory (pp. 7-21). Berlin: Springer.
    • (2008) Generalization bounds for some ordinal regression algorithms , pp. 7-21
    • Agarwal, S.1
  • 4
    • 84898065480 scopus 로고    scopus 로고
    • Learning Theory: 21st Annual Conference on Learning Theory, Berlin: Springer
    • Ailon, N., & Mohri, M. (2008). An efficient reduction of ranking to classification. In Learning Theory: 21st Annual Conference on Learning Theory (pp. 87-98). Berlin: Springer.
    • (2008) An efficient reduction of ranking to classification , pp. 87-98
    • Ailon, N.1    Mohri, M.2
  • 7
    • 0002094343 scopus 로고    scopus 로고
    • Generalization performance of support vector machines and other pattern classifiers
    • B. Schölkopf, C.J.C. Burges, & A. J. Smola (Eds)., Cambridge, MA: MIT Press
    • Bartlett, P. L., & Shawe-Taylor, J. (1998). Generalization performance of support vector machines and other pattern classifiers. In B. Schölkopf, C.J.C. Burges, & A. J. Smola (Eds.), Advances in kernel methods: Support vector learning (pp. 43-54). Cambridge, MA: MIT Press.
    • (1998) Advances in kernel methods: Support vector learning , pp. 43-54
    • Bartlett, P.L.1    Shawe-Taylor, J.2
  • 11
    • 34547698831 scopus 로고    scopus 로고
    • Learning to classify ordinal data: The data replication method
    • Cardoso, J. S., & da Costa, J. F. P. (2007). Learning to classify ordinal data: The data replication method. Journal of Machine Learning Research, 8, 1393-1429.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1393-1429
    • Cardoso, J.S.1    da Costa, J.F.P.2
  • 15
    • 33847626350 scopus 로고    scopus 로고
    • Support vector ordinal regression
    • Chu, W., & Keerthi, S. S. (2007). Support vector ordinal regression. Neural Computation, 19, 792-815.
    • (2007) Neural Computation , vol.19 , pp. 792-815
    • Chu, W.1    Keerthi, S.S.2
  • 16
    • 55349114379 scopus 로고    scopus 로고
    • Statistical analysis of Bayes optimal subset ranking
    • Cossock, D., & Zhang, T. (2008). Statistical analysis of Bayes optimal subset ranking. IEEE Transactions on Information Theory, 54, 4140-5154.
    • (2008) IEEE Transactions on Information Theory , vol.54 , pp. 4140-5154
    • Cossock, D.1    Zhang, T.2
  • 17
    • 14544278410 scopus 로고    scopus 로고
    • Online ranking by projecting
    • Crammer, K., & Singer, Y. (2005). Online ranking by projecting. Neural Computation, 17, 145-175.
    • (2005) Neural Computation , vol.17 , pp. 145-175
    • Crammer, K.1    Singer, Y.2
  • 20
    • 84948166287 scopus 로고    scopus 로고
    • Machine Learning: Proceedings of the 12th European Conference onMachine Learning
    • Frank, E., & Hall, M. (2001). A simple approach to ordinal classification. In Machine Learning: Proceedings of the 12th European Conference onMachine Learning (pp. 145-156).
    • (2001) A simple approach to ordinal classification , pp. 145-156
    • Frank, E.1    Hall, M.2
  • 21
    • 0033281425 scopus 로고    scopus 로고
    • Large margin classification using the perceptron algorithm
    • Freund, Y., & Schapire, R. E. (1999). Large margin classification using the perceptron algorithm. Machine Learning, 37(3), 277-296.
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 277-296
    • Freund, Y.1    Schapire, R.E.2
  • 23
    • 84869128840 scopus 로고    scopus 로고
    • Constraint classification:Anew approach to multiclass classification and ranking
    • S. Becker, S. Thrun, & K. Obermayer (Eds.), Cambridge, MA: MIT Press
    • Har-Peled, S., Roth, D.,&Zimak, D. (2003).Constraint classification:Anew approach to multiclass classification and ranking. In S. Becker, S. Thrun, & K. Obermayer (Eds.), Advances in neural information processing systems, 15 (pp. 365-379). Cambridge, MA: MIT Press.
    • (2003) Advances in neural information processing systems , vol.15 , pp. 365-379
    • Har-Peled, S.1    Roth, D.2    Zimak, D.3
  • 25
    • 0008371352 scopus 로고    scopus 로고
    • Large margin rank boundaries for ordinal regression
    • A. J. Smola, P. Bartlett, B. Schölkopf, & D. Schuurmans (Eds.)
    • Herbrich, R., Graepel, T., & Obermayer, K. (2000). Large margin rank boundaries for ordinal regression. In A. J. Smola, P. Bartlett, B. Schölkopf, & D. Schuurmans (Eds.), Advances in large margin classifiers (pp. 115-132).
    • (2000) Advances in large margin classifiers , pp. 115-132
    • Herbrich, R.1    Graepel, T.2    Obermayer, K.3
  • 27
    • 84947403595 scopus 로고
    • Probability inequalities for sums of bounded random variables
    • Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58(301), 13-30.
    • (1963) Journal of the American Statistical Association , vol.58 , Issue.301 , pp. 13-30
    • Hoeffding, W.1
  • 28
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • Holte, R. C. (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11(1), 63-91.
    • (1993) Machine Learning , vol.11 , Issue.1 , pp. 63-91
    • Holte, R.C.1
  • 30
    • 33749563073 scopus 로고    scopus 로고
    • Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York: ACM
    • Joachims, T. (2006). Training linear SVMs in linear time. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 217-226). New York: ACM.
    • (2006) Training linear SVMs in linear time , pp. 217-226
    • Joachims, T.1
  • 32
    • 71149093470 scopus 로고    scopus 로고
    • Machine Learning: Proceedings of the 26th International Conference, Berlin: Springer
    • Kotłowski, W., & Słowiński, R. (2009). Rule learning with monotonicity constraints. In Machine Learning: Proceedings of the 26th International Conference (pp. 537-544). Berlin: Springer.
    • (2009) Rule learning with monotonicity constraints , pp. 537-544
    • Kotłowski, W.1    Słowiński, R.2
  • 33
    • 41549092416 scopus 로고    scopus 로고
    • Proceedings of the 2007 International Joint Conference on Neural Networks, Piscataway, NJ: IEEE
    • Li, L.,&Lin, H.-T. (2007a).Optimizing 0/1 loss for perceptrons by random coordinate descent. In Proceedings of the 2007 International Joint Conference on Neural Networks (pp. 749-754). Piscataway, NJ: IEEE.
    • (2007) Optimizing 0/1 loss for perceptrons by random coordinate descent , pp. 749-754
    • Li, L.1    Lin, H.-T.2
  • 34
    • 39649107920 scopus 로고    scopus 로고
    • Ordinal regression by extended binary classification
    • B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Cambridge, MA: MIT Press
    • Li, L.,&Lin, H.-T. (2007b). Ordinal regression by extended binary classification. In B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Advances in neural information processing systems, 19 (pp. 865-872). Cambridge, MA: MIT Press.
    • (2007) Advances in neural information processing systems , vol.19 , pp. 865-872
    • Li, L.1    Lin, H.-T.2
  • 35
    • 85162006799 scopus 로고    scopus 로고
    • McRank: Learning to rank using multiple classification and gradient boosting
    • J. C. Platt, D. Koller, Y. Singer, & S. Roweis (Eds.),
    • Li, P., Burges, C., & Wu, Q. (2008). McRank: Learning to rank using multiple classification and gradient boosting. In J. C. Platt, D. Koller, Y. Singer, & S. Roweis (Eds.), Advances in neural information processing systems, 20 (pp. 897-904).
    • (2008) Advances in neural information processing systems , vol.20 , pp. 897-904
    • Li, P.1    Burges, C.2    Wu, Q.3
  • 36
    • 80052878113 scopus 로고    scopus 로고
    • Unpublished doctoral dissertation, California Institute of Technology
    • Lin, H.-T. (2008). From ordinal ranking to binary classification. Unpublished doctoral dissertation, California Institute of Technology.
    • (2008) From ordinal ranking to binary classification
    • Lin, H.-T.1
  • 38
    • 41549137738 scopus 로고    scopus 로고
    • Support vector machinery for infinite ensemble learning
    • Lin, H.-T., & Li, L. (2008). Support vector machinery for infinite ensemble learning. Journal of Machine Learning Research, 9, 285-312.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 285-312
    • Lin, H.-T.1    Li, L.2
  • 41
    • 0001306637 scopus 로고
    • Regression models for ordinal data. Journal of theRoyal Statistical Society
    • McCullagh, P. (1980). Regression models for ordinal data. Journal of theRoyal Statistical Society. Series B, 42, 109-142.
    • (1980) Series B , vol.42 , pp. 109-142
    • McCullagh, P.1
  • 42
    • 1542276975 scopus 로고    scopus 로고
    • An introduction to boosting and leveraging
    • O. Bousquet, U. von Luxburg, & G. Rätsch (Eds.), Berlin: Springer
    • Meir, R., & Rätsch, G. (2003). An introduction to boosting and leveraging. In O. Bousquet, U. von Luxburg, & G. Rätsch (Eds.), Advanced Lectures on Machine Learning (pp. 119-184). Berlin: Springer.
    • (2003) Advanced Lectures on Machine Learning , pp. 119-184
    • Meir, R.1    Rätsch, G.2
  • 43
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81-106.
    • (1986) Machine Learning , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 47
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Schapire, R. E., Freund, Y., Bartlett, P. L., & Lee, W. S. (1998). Boosting the margin: A new explanation for the effectiveness of voting methods. Annals of Statistics, 26(5), 1651-1686.
    • (1998) Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.L.3    Lee, W.S.4
  • 48
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms:Using confidencerated predictions
    • Schapire, R. E.,&Singer, Y. (1999). Improved boosting algorithms:Using confidencerated predictions. Machine Learning, 37(3), 297-336.
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 50
    • 84899011021 scopus 로고    scopus 로고
    • Ranking with large margin principle: Two approaches
    • S. Becker, S. Thrun, & K. Obermayer (Eds.), Cambridge, MA: MIT Press
    • Shashua, A., & Levin, A. (2003). Ranking with large margin principle: Two approaches. In S. Becker, S. Thrun, & K. Obermayer (Eds.), Advances in neural information processing systems, 15 (pp. 937-944). Cambridge, MA: MIT Press.
    • (2003) Advances in neural information processing systems , vol.15 , pp. 937-944
    • Shashua, A.1    Levin, A.2
  • 51
    • 84898968939 scopus 로고    scopus 로고
    • Monotonic networks
    • M. Jordan, M. Kearns, & S. Solla (Eds.), Cambridge, MA: MIT Press
    • Sill, J. (1998). Monotonic networks. In M. Jordan, M. Kearns, & S. Solla (Eds.), Advances in neural information processing systems, 10 (pp. 661-667). Cambridge, MA: MIT Press.
    • (1998) Advances in neural information processing systems , vol.10 , pp. 661-667
    • Sill, J.1
  • 54
    • 0021518106 scopus 로고
    • A theory of the learnable
    • Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27(11), 1134-1142.
    • (1984) Communications of the ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.