메뉴 건너뛰기




Volumn 8, Issue 2, 2013, Pages

Prediction of P53 Mutants (Multiple Sites) Transcriptional Activity Based on Structural (2D&3D) Properties

Author keywords

[No Author keywords available]

Indexed keywords

PROTEIN P53;

EID: 84873931832     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0055401     Document Type: Article
Times cited : (23)

References (79)
  • 1
    • 84873935066 scopus 로고    scopus 로고
    • Publication Number: US2005/0065332 AI, PCT Filed: Jan 15, 2003, PCT No.: PCT/US03/0024
    • Brachmann KR (2005) Global Suppressors of P53 Mutations. Publication Number: US2005/0065332 AI, PCT Filed: Jan 15, 2003, PCT No.: PCT/US03/0024.
    • (2005) Global Suppressors of P53 Mutations
    • Brachmann, K.R.1
  • 2
    • 0033552638 scopus 로고    scopus 로고
    • May P, May E (December 1999) Twenty years of p53 research: structural and functional aspects of the p53 protein
    • Doi:. PMID 10618702 10.1038/sj.onc.1203285
    • May P, May E (December 1999) Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene 18 (53): 7621-36 Doi:10.1038/sj.onc.1203285. PMID 10618702.
    • Oncogene , vol.18 , Issue.53 , pp. 7621-7636
  • 4
    • 34248379012 scopus 로고    scopus 로고
    • Impact of mutant p53 functional properties on TP53 mutation patterns and tumour phenotype: lessons from recent developments in the IARC TP53 database
    • doi: 10.1002/humu.20495
    • Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, et al. (2007) Impact of mutant p53 functional properties on TP53 mutation patterns and tumour phenotype: lessons from recent developments in the IARC TP53 database. Human Mutation 28: 622-629 doi:10.1002/humu.20495.
    • (2007) Human Mutation , vol.28 , pp. 622-629
    • Petitjean, A.1    Mathe, E.2    Kato, S.3    Ishioka, C.4    Tavtigian, S.V.5
  • 5
    • 0029845760 scopus 로고    scopus 로고
    • Structure and function of the P53 tumour suppressor gene: clues for rational cancer therapeutic strategies
    • Harris CC (1996) Structure and function of the P53 tumour suppressor gene: clues for rational cancer therapeutic strategies. Journal of the National Cancer Institute 88, 1442-1454.
    • (1996) Journal of the National Cancer Institute , vol.88 , pp. 1442-1454
    • Harris, C.C.1
  • 6
    • 0029922621 scopus 로고    scopus 로고
    • P53 tumour suppressor gene: from the basic research laboratory to the clinic-an abridged historical perspective
    • Harris CC (1996) P53 tumour suppressor gene: from the basic research laboratory to the clinic-an abridged historical perspective. Carcinogenesis 17, 1187-98.
    • (1996) Carcinogenesis , vol.17 , pp. 1187-1198
    • Harris, C.C.1
  • 7
    • 0027489384 scopus 로고
    • Clinical implications of the P53 tumor-suppressor gene
    • Harris CC, Hollstein M(1993) Clinical implications of the P53 tumor-suppressor gene. N Engl Journal of Medicine 329, 1318-27.
    • (1993) N Engl Journal of Medicine , vol.329 , pp. 1318-1327
    • Harris, C.C.1    Hollstein, M.2
  • 8
    • 84873883842 scopus 로고    scopus 로고
    • International Agency for Research on Cancer
    • International Agency for Research on Cancer. Available: http://www.iarc.fr. Accessed 10 November 2012.
  • 9
    • 83555162507 scopus 로고    scopus 로고
    • Regulation of p53 stability and function by the deubiquitinating enzyme USP42
    • Hock AK, Vigneron AM, Carter S, Ludwig RL, Vousden KH, (2011) Regulation of p53 stability and function by the deubiquitinating enzyme USP42. EMBO J 30: 4921-30.
    • (2011) EMBO J , vol.30 , pp. 4921-4930
    • Hock, A.K.1    Vigneron, A.M.2    Carter, S.3    Ludwig, R.L.4    Vousden, K.H.5
  • 10
    • 0036527761 scopus 로고    scopus 로고
    • Dissecting p53 tumour suppressor functions in vivo
    • Doi: 10.1016/S1535-6108(02)00047-8. PMID 12086865, April
    • Schmitt CA, Fridman JS, Yang M, Baranov E, Hoffman RM,et al. (April 2002) Dissecting p53 tumour suppressor functions in vivo. Cancer Cell 1 (3): 289-298. Doi: 10.1016/S1535-6108(02)00047-8. PMID 12086865.
    • (2002) Cancer Cell , vol.1 , Issue.3 , pp. 289-298
    • Schmitt, C.A.1    Fridman, J.S.2    Yang, M.3    Baranov, E.4    Hoffman, R.M.5
  • 11
    • 84873907110 scopus 로고    scopus 로고
    • Bioinformatics Organisation, Accessed 2012 Nov 18
    • Bioinformatics Organisation http://www.bioinformatics.org/p53/introduction.html Accessed 2012 Nov 18.
  • 12
    • 0025815451 scopus 로고
    • Identification of p53 as a sequence-specific DNA-binding protein
    • June, Doi: 10.1126/science.2047879. PMID 2047879
    • Kern SE, Kinzler KW, Bruskin A, Jarosz D, Friedman P,et al. (June 1991) Identification of p53 as a sequence-specific DNA-binding protein. Science 252 (5013): 1708-11. Doi: 10.1126/science.2047879. PMID 2047879.
    • (1991) Science , vol.252 , Issue.5013 , pp. 1708-1711
    • Kern, S.E.1    Kinzler, K.W.2    Bruskin, A.3    Jarosz, D.4    Friedman, P.5
  • 13
    • 0033986412 scopus 로고    scopus 로고
    • p53 Website and Analysis of p53 Gene Mutations in Human Cancer: Forging a Link Between Epidemiology and Carcinogenesis
    • Soussi T, Dehouche K, Béroud C, (2000) p53 Website and Analysis of p53 Gene Mutations in Human Cancer: Forging a Link Between Epidemiology and Carcinogenesis. MIDI Special Article, Human Mutation 15: 105.113.
    • (2000) MIDI Special Article, Human Mutation , vol.15 , pp. 105-113
    • Soussi, T.1    Dehouche, K.2    Béroud, C.3
  • 14
    • 1842737710 scopus 로고    scopus 로고
    • Global Supressor Motif for P53 Cancer Mutants
    • Baroni TE, Wang T, Qian H, Dearth LR, Truong LN, et al. (2004) Global Supressor Motif for P53 Cancer Mutants. PNAS, 4930-4935, vol. 101 no.14.
    • (2004) PNAS , vol.101 , Issue.14 , pp. 4930-4935
    • Baroni, T.E.1    Wang, T.2    Qian, H.3    Dearth, L.R.4    Truong, L.N.5
  • 15
    • 0031841384 scopus 로고    scopus 로고
    • IARC Database of P53 Gene Mutations in Human Tumors and Cell lines: updated compilation, revised formats and new visualization tools
    • P Hainaut, T Hernandez, A Robinson, P Rodriguez-Tome, T Flores, M Hollstein, et al. (1998) IARC Database of P53 Gene Mutations in Human Tumors and Cell lines: updated compilation, revised formats and new visualization tools. Nucleic Acids Research 26, 205-13.
    • (1998) Nucleic Acids Research , vol.26 , pp. 205-213
    • Hainaut, P.1    Hernandez, T.2    Robinson, A.3    Rodriguez-Tome, P.4    Flores, T.5    Hollstein, M.6
  • 16
    • 0033992478 scopus 로고    scopus 로고
    • P53 and Human Cancer: the first ten thousand mutations
    • Hainaut P, Hollenstein M (2000) P53 and Human Cancer: the first ten thousand mutations. Adv. Cancer Research, 77, 81-137.
    • (2000) Adv. Cancer Research , vol.77 , pp. 81-137
    • Hainaut, P.1    Hollenstein, M.2
  • 17
    • 0036129489 scopus 로고    scopus 로고
    • The p53 pathway in breast cancer
    • © 2002 BioMed Central Ltd, (Print ISSN 1465-5411; Online ISSN 1465-542X)
    • Gasco M, Shami S, Crook T (2002) The p53 pathway in breast cancer, Breast Cancer Res 4: 70-76, © 2002 BioMed Central Ltd, (Print ISSN 1465-5411; Online ISSN 1465-542X).
    • (2002) Breast Cancer Res , vol.4 , pp. 70-76
    • Gasco, M.1    Shami, S.2    Crook, T.3
  • 18
    • 84873895905 scopus 로고    scopus 로고
    • The P53 Website, update July 2010
    • The P53 Website, update July 2010, http://p53.free.fr/Accessed 2012 Nov 15.
  • 19
    • 32544458945 scopus 로고    scopus 로고
    • Predicting the Transactivation Activity of p53 Missense Mutants Using a Four-Body Potential Score Derived From Delaunay Tessellations
    • Mathe E, Olivier M, Kato S, Ishioka C, Vaisman I, et al. (2006) Predicting the Transactivation Activity of p53 Missense Mutants Using a Four-Body Potential Score Derived From Delaunay Tessellations. Human Mutation 0, 1-10.
    • (2006) Human Mutation , pp. 1-10
    • Mathe, E.1    Olivier, M.2    Kato, S.3    Ishioka, C.4    Vaisman, I.5
  • 20
    • 79961193016 scopus 로고    scopus 로고
    • Predicting Transcriptional Activity of Multiple Site p53 Mutants Based on Hybrid Properties
    • doi: 10.1371/journal.pone.0022940
    • Huang T, Niu S, Xu Z, Huang Y, Kong X, et al. (2011) Predicting Transcriptional Activity of Multiple Site p53 Mutants Based on Hybrid Properties. PLoS ONE 6(8): e22940 doi:10.1371/journal.pone.0022940.
    • (2011) PLoS ONE , vol.6 , Issue.8
    • Huang, T.1    Niu, S.2    Xu, Z.3    Huang, Y.4    Kong, X.5
  • 21
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
    • Peng H, Long F, Ding C, (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27: 1226-1238.
    • (2005) IEEE Trans Pattern Anal Mach Intell , vol.27 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 22
    • 0033931867 scopus 로고    scopus 로고
    • Assessing the accuracy of prediction algorithms for classification: an overview
    • Baldi P, Brunak S, Chauvin Y, Andersen CA, Nielsen H, (2000) Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16: 412-424.
    • (2000) Bioinformatics , vol.16 , pp. 412-424
    • Baldi, P.1    Brunak, S.2    Chauvin, Y.3    Andersen, C.A.4    Nielsen, H.5
  • 23
    • 84867483025 scopus 로고    scopus 로고
    • Discovery of Knowledge Patterns in Clinical Data through Data Mining Algorithms: Multi-class Categorization of Breast Tissue Data, International Journal of Computer Applications (IJCA)
    • DOI: 10.5120/3920-5521
    • Jacob SG, Geetha Ramani R, (2011) Discovery of Knowledge Patterns in Clinical Data through Data Mining Algorithms: Multi-class Categorization of Breast Tissue Data, International Journal of Computer Applications (IJCA). 32(7): 46-53 DOI:10.5120/3920-5521. Published by Foundation of Computer Science, New York, USA.
    • (2011) , vol.32 , Issue.7 , pp. 46-53
    • Jacob, S.G.1    Geetha Ramani, R.2
  • 25
    • 79954616130 scopus 로고    scopus 로고
    • Prediction of antimicrobial peptides based on sequence alignment and feature selection methods
    • Wang P, Hu L, Liu G, Jiang N, Chen X, et al. (2011) Prediction of antimicrobial peptides based on sequence alignment and feature selection methods. PLoS One 6: e18476.
    • (2011) PLoS One , vol.6
    • Wang, P.1    Hu, L.2    Liu, G.3    Jiang, N.4    Chen, X.5
  • 27
    • 78650746655 scopus 로고    scopus 로고
    • Cell-PLoc 2.0: An improved package of web-servers for predicting sub cellular localization of proteins in various organisms
    • (Openly accessible at)
    • Chou KC, Shen HB, (2010) Cell-PLoc 2.0: An improved package of web-servers for predicting sub cellular localization of proteins in various organisms. Natural Science 2: 1090-1103 (Openly accessible at http://www.scirp.org/journal/NS/).
    • (2010) Natural Science , vol.2 , pp. 1090-1103
    • Chou, K.C.1    Shen, H.B.2
  • 28
    • 79951518208 scopus 로고    scopus 로고
    • Some remarks on protein attribute prediction and pseudo amino acid composition (50th Anniversary Year Review)
    • Chou KC, (2011) Some remarks on protein attribute prediction and pseudo amino acid composition (50th Anniversary Year Review). Journal of Theoretical Biology 273: 236-247.
    • (2011) Journal of Theoretical Biology , vol.273 , pp. 236-247
    • Chou, K.C.1
  • 29
    • 84873916153 scopus 로고    scopus 로고
    • University of California, Irvine (UCI, Irvine) Machine Learning Repository, Accessed October 10 2012
    • University of California, Irvine (UCI, Irvine) Machine Learning Repository. Available: http://archive.ics.uci.edu/ml/datasets/p53Mutants. Accessed October 10 2012.
  • 30
    • 70349671213 scopus 로고    scopus 로고
    • Predicting positive p53 cancer rescue regions using Most Informative Positive (MIP) active learning
    • Danziger SA, Baronio R, Ho L, Hall L, Salmon K, et al. (2009) Predicting positive p53 cancer rescue regions using Most Informative Positive (MIP) active learning. PLoS Comput Biol 5: e1000498.
    • (2009) PLoS Comput Biol , vol.5
    • Danziger, S.A.1    Baronio, R.2    Ho, L.3    Hall, L.4    Salmon, K.5
  • 31
    • 34547875776 scopus 로고    scopus 로고
    • Choosing where to look next in a mutation sequence space: Active Learning of informative p53 cancer rescue mutants
    • Danziger SA, Zeng J, Wang Y, Brachmann RK, Lathrop RH, (2007) Choosing where to look next in a mutation sequence space: Active Learning of informative p53 cancer rescue mutants. Bioinformatics 23: i104-114.
    • (2007) Bioinformatics , vol.23
    • Danziger, S.A.1    Zeng, J.2    Wang, Y.3    Brachmann, R.K.4    Lathrop, R.H.5
  • 33
    • 0036771626 scopus 로고    scopus 로고
    • Accelerated Poisson-Boltzmann Calculations for Static and Dynamic Systems
    • 2002
    • Luo R, David L, Gilson MK (2002) Accelerated Poisson-Boltzmann Calculations for Static and Dynamic Systems. J. Computational Chemistry, vol. 23, pp.1244-1253, 2002.
    • (2002) J. Computational Chemistry , vol.23 , pp. 1244-1253
    • Luo, R.1    David, L.2    Gilson, M.K.3
  • 34
    • 84873885421 scopus 로고    scopus 로고
    • Predictive Analytics Software (SPSS), Accessed 2012 Nov 2
    • Predictive Analytics Software (SPSS), www.ibm.com/software/analytics/spss.Accessed 2012 Nov 2.
  • 35
    • 84873909200 scopus 로고    scopus 로고
    • Waikato Environment for Knowledge Analysis (WEKA) Machine Learning Tool, Accessed 2012 Nov 5
    • Waikato Environment for Knowledge Analysis (WEKA) Machine Learning Tool, http://www.cs.waikato.ac.nz/ml/weka/.Accessed 2012 Nov 5.
  • 37
    • 0004255908 scopus 로고    scopus 로고
    • Tata Mc-Graw Hill, pages. ISBN 0070428077
    • Mitchell T (1997) Machine Learning. Tata Mc-Graw Hill. 414 pages. ISBN 0070428077.
    • (1997) Machine Learning , pp. 414
    • Mitchell, T.1
  • 38
    • 84873929130 scopus 로고    scopus 로고
    • Tanagra Data Mining tutorials, Accessed 2012 Nov 15 This website provides detailed information on the basics of Data Mining Algorithms
    • Tanagra Data Mining tutorials, http://data-mining-tutorials.blogspot.com/.Accessed 2012 Nov 15 This website provides detailed information on the basics of Data Mining Algorithms.
  • 39
    • 84873918743 scopus 로고    scopus 로고
    • CMP: Data Mining and Statistics within the Health Services, Dr. Wenjia Wang: Tutorial for DM tool Weka Information Gain Criterion, Accessed 2012 Nov 1
    • CMP: Data Mining and Statistics within the Health Services, Dr. Wenjia Wang: Tutorial for DM tool Weka Information Gain Criterion, https://blog.itu.dk/SPVC-E2010/files/2010/11/wekatutorial.pdf. Accessed 2012 Nov 1.
  • 42
    • 79955705393 scopus 로고    scopus 로고
    • Combined Feature Selection and classification - A novel approach for the categorization of web pages
    • Selvakuberan K, Indradevi M, Rajaram R (2008) Combined Feature Selection and classification - A novel approach for the categorization of web pages. Journal of Information and Computing Science Vol. 3, No. 2, 083-089.
    • (2008) Journal of Information and Computing Science , vol.3 , Issue.2 , pp. 083-089
    • Selvakuberan, K.1    Indradevi, M.2    Rajaram, R.3
  • 43
    • 34548439881 scopus 로고    scopus 로고
    • Using Chou's amphiphilic pseudo amino acid composition and support vector machine for prediction of enzyme subfamily classes
    • Zhou XB, Chen C, Li ZC, Zou XY, (2007) Using Chou's amphiphilic pseudo amino acid composition and support vector machine for prediction of enzyme subfamily classes. Journal of Theoretical Biology 248: 546-551.
    • (2007) Journal of Theoretical Biology , vol.248 , pp. 546-551
    • Zhou, X.B.1    Chen, C.2    Li, Z.C.3    Zou, X.Y.4
  • 44
    • 78149247827 scopus 로고    scopus 로고
    • Prediction of protein sub mitochondria locations based on data fusion of various features of sequences
    • Zakeri P, Moshiri B, Sadeghi M, (2011) Prediction of protein sub mitochondria locations based on data fusion of various features of sequences. Journal of Theoretical Biology 269: 208-216.
    • (2011) Journal of Theoretical Biology , vol.269 , pp. 208-216
    • Zakeri, P.1    Moshiri, B.2    Sadeghi, M.3
  • 45
    • 77958497871 scopus 로고    scopus 로고
    • Prediction of cyclin proteins using Chou's pseudo amino acid composition
    • Mohabatkar H, (2010) Prediction of cyclin proteins using Chou's pseudo amino acid composition. Protein & Peptide Letters 17: 1207-1214.
    • (2010) Protein & Peptide Letters , vol.17 , pp. 1207-1214
    • Mohabatkar, H.1
  • 46
    • 77951992931 scopus 로고    scopus 로고
    • Prediction of G-Protein-Coupled Receptor Classes in Low Homology Using Chou's Pseudo Amino Acid Composition with Approximate Entropy and Hydrophobicity Patterns
    • Gu Q, Ding YS, Zhang TL, (2010) Prediction of G-Protein-Coupled Receptor Classes in Low Homology Using Chou's Pseudo Amino Acid Composition with Approximate Entropy and Hydrophobicity Patterns. Protein & Peptide Letters 17: 559-567.
    • (2010) Protein & Peptide Letters , vol.17 , pp. 559-567
    • Gu, Q.1    Ding, Y.S.2    Zhang, T.L.3
  • 47
    • 77958505121 scopus 로고    scopus 로고
    • Characteristic peptides of protein secondary structural motifs
    • Joshi RR, Sekharan S, (2010) Characteristic peptides of protein secondary structural motifs. Protein & Peptide Letters 17: 1198-1206.
    • (2010) Protein & Peptide Letters , vol.17 , pp. 1198-1206
    • Joshi, R.R.1    Sekharan, S.2
  • 48
    • 78649756877 scopus 로고    scopus 로고
    • Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition
    • Hayat M, Khan A, (2011) Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition. Journal of Theoretical Biology 271: 10-17.
    • (2011) Journal of Theoretical Biology , vol.271 , pp. 10-17
    • Hayat, M.1    Khan, A.2
  • 50
    • 11944266539 scopus 로고
    • Information Theory and Statistical Mechanics
    • May, Bibcode 1957PhRv.106.620J. doi:10.1103/PhysRev.106.620
    • Jaynes ET (May 1957) Information Theory and Statistical Mechanics. Physical Review106 (4): 620-630. Bibcode 1957PhRv.106.620J. doi:10.1103/PhysRev.106.620.
    • (1957) Physical Review , vol.106 , Issue.4 , pp. 620-630
    • Jaynes, E.T.1
  • 51
    • 79955076643 scopus 로고    scopus 로고
    • Supervised Machine Learning: A Review of Classification Techniques
    • Kotsiantis SB (2007) Supervised Machine Learning: A Review of Classification Techniques. Informatica 31249-268.
    • (2007) Informatica , pp. 31249-31268
    • Kotsiantis, S.B.1
  • 52
    • 85065198637 scopus 로고
    • Induction of One-Level Decision Trees, in ML92
    • Aberdeen, Scotland, 1-3 July 1992, San Francisco, CA: Morgan Kaufmann
    • Wayne I, Pat L (1992) Induction of One-Level Decision Trees, in ML92. Proceedings of the Ninth International Conference on Machine Learning, Aberdeen, Scotland, 1-3 July 1992, San Francisco, CA: Morgan Kaufmann, 233-240.
    • (1992) Proceedings of the Ninth International Conference on Machine Learning , pp. 233-240
    • Wayne, I.1    Pat, L.2
  • 53
    • 85027395348 scopus 로고
    • Averaging Over Decision Stumps in Machine Learning. ECML-94
    • Catania, Italy. Proceedings, Lecture Notes in Computer Science (LNCS) 784, Springer, 231-241 ISBN 3-540-57868-4 doi:10.1007/3-540-57868-4-61
    • Oliver JJ, Hand D (1994) Averaging Over Decision Stumps in Machine Learning. ECML-94, European Conference on Machine Learning, Catania, Italy. Proceedings, Lecture Notes in Computer Science (LNCS) 784, Springer, 231-241 ISBN 3-540-57868-4 doi:10.1007/3-540-57868-4-61.
    • (1994) European Conference on Machine Learning
    • Oliver, J.J.1    Hand, D.2
  • 54
    • 84983110889 scopus 로고
    • A Decision-Theoretic Generalization of on-Line Learning and Application to Boosting
    • 10.1.1.56.9855
    • Freund Y, Schapire RE (1995) A Decision-Theoretic Generalization of on-Line Learning and Application to Boosting. CiteSeerX: 10.1.1.56.9855.
    • (1995) CiteSeerX
    • Freund, Y.1    Schapire, R.E.2
  • 55
    • 4644257995 scopus 로고    scopus 로고
    • Statistical behaviour and consistency of classification methods based on convex risk minimization
    • Zhang T (2004) Statistical behaviour and consistency of classification methods based on convex risk minimization. Annals of Statistics 32 (1), 56-85.
    • (2004) Annals of Statistics , vol.32 , Issue.1 , pp. 56-85
    • Zhang, T.1
  • 56
    • 33748611921 scopus 로고    scopus 로고
    • A tutorial article on ensemble systems including pseudocode, block diagrams and implementation issues for AdaBoost and other ensemble learning algorithms
    • Polikar R, (2006) A tutorial article on ensemble systems including pseudocode, block diagrams and implementation issues for AdaBoost and other ensemble learning algorithms. IEEE Circuits and Systems Magazine. 6: 21-45.
    • (2006) IEEE Circuits and Systems Magazine , vol.6 , pp. 21-45
    • Polikar, R.1
  • 58
    • 84873893086 scopus 로고    scopus 로고
    • Additive logistic regression: a statistical view of boosting
    • 10.1.1.51.9525
    • Friedman J, Hastie T, Tibshirani R (1998) Additive logistic regression: a statistical view of boosting. CiteSeerX: 10.1.1.51.9525.
    • (1998) CiteSeerX
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 60
    • 84863325623 scopus 로고    scopus 로고
    • Efficient Classifier for Classification of Hepatitis C Virus Clinical Data through Data Mining Algorithms and Techniques
    • Pondicherry, India, Techno Forum Group, India. ISBN: 978-81-920575-8-3: DOI: 10.73445/ISBN-0768, ACM#.dber.imera.10.73445
    • Jacob SG, Geetha Ramani R, Nancy P (2012) Efficient Classifier for Classification of Hepatitis C Virus Clinical Data through Data Mining Algorithms and Techniques. Proceedings of the International Conference on Computer Applications, Pondicherry, India, Techno Forum Group, India. ISBN: 978-81-920575-8-3: DOI: 10.73445/ISBN-0768, ACM#.dber.imera.10.73445.
    • (2012) Proceedings of the International Conference on Computer Applications
    • Jacob, S.G.1    Geetha Ramani, R.2    Nancy, P.3
  • 61
    • 84866141625 scopus 로고    scopus 로고
    • Mining of Classification Patterns in Clinical Data through Data Mining Algorithms
    • ACM New York, NY, USA ©2012 table of contents ISBN: 978-1-4503-1196-0 doi>10.1145/2345396.2345557
    • Jacob SG, Geetha Ramani R (2012) Mining of Classification Patterns in Clinical Data through Data Mining Algorithms. Proceedings of the International Conference on Advances in Computing, Communications and Informatics, Pages 997-1003 ACM New York, NY, USA ©2012 table of contents ISBN: 978-1-4503-1196-0 doi>10.1145/2345396.2345557.
    • (2012) Proceedings of the International Conference on Advances in Computing, Communications and Informatics , pp. 997-1003
    • Jacob, S.G.1    Geetha Ramani, R.2
  • 62
    • 84863328721 scopus 로고    scopus 로고
    • Evolving Efficient Classification Rules from Cardiotocography Data through Data Mining Methods and Techniques
    • Jacob SG, Geetha Ramani R (2012) Evolving Efficient Classification Rules from Cardiotocography Data through Data Mining Methods and Techniques. European Journal of Scientific Research, Vol.78 No.3, 468-480.
    • (2012) European Journal of Scientific Research , vol.78 , Issue.3 , pp. 468-480
    • Jacob, S.G.1    Geetha Ramani, R.2
  • 63
    • 84873920001 scopus 로고    scopus 로고
    • Notes prepared for the Cornell Summer School in Probability, July 11- July 22, 2005
    • Le Gall J-F (2005) Random Trees and Applications.Notes prepared for the Cornell Summer School in Probability, July 11- July 22, 2005.
    • (2005) Random Trees and Applications
    • Le Gall, J.-F.1
  • 66
    • 1842743412 scopus 로고    scopus 로고
    • Automated annotation of keywords for proteins related to mycoplas-mataceae using machine learning techniques
    • Bazzan AL, Engel PM, Schroeder LF, da Silva SC, (2002) Automated annotation of keywords for proteins related to mycoplas-mataceae using machine learning techniques. Bioinformatics 18: 35S-43S.
    • (2002) Bioinformatics , vol.18
    • Bazzan, A.L.1    Engel, P.M.2    Schroeder, L.F.3    da Silva, S.C.4
  • 70
    • 0033707946 scopus 로고    scopus 로고
    • Friedman N, Linial M, Nachman I, Pe'er D (August 2000) Using Bayesian Networks to Analyze Expression Data
    • (Larchmont, New York: Mary Ann Liebert, Inc.), doi: 10.1089/106652700750050961, ISSN 1066-5277.PMID 11108481
    • Friedman N, Linial M, Nachman I, Pe'er D (August 2000) Using Bayesian Networks to Analyze Expression Data. Journal of Computational Biology (Larchmont, New York: Mary Ann Liebert, Inc.) 7 (3/4): 601-620 doi:10.1089/106652700750050961. ISSN 1066-5277.PMID 11108481.
    • Journal of Computational Biology , vol.7 , Issue.3-4 , pp. 601-620
  • 71
    • 79954988537 scopus 로고    scopus 로고
    • Learning Genetic Epistasis using Bayesian Network Scoring Criteria
    • doi: 10.1186/1471-2105-12-89, PMC 3080825. PMID 21453508
    • Jiang X, Neapolitan RE, Barmada MM, Visweswaran S, (2011) Learning Genetic Epistasis using Bayesian Network Scoring Criteria. BMC Bioinformatics 12: 89 doi:10.1186/1471-2105-12-89. PMC 3080825. PMID 21453508.
    • (2011) BMC Bioinformatics , vol.12 , pp. 89
    • Jiang, X.1    Neapolitan, R.E.2    Barmada, M.M.3    Visweswaran, S.4
  • 72
    • 0039720669 scopus 로고
    • New York, NY: Chapman and Hall. ISBN 0-412-03471-9
    • Geisser S (1993) Predictive Inference. New York, NY: Chapman and Hall. ISBN 0-412-03471-9.
    • (1993) Predictive Inference
    • Geisser, S.1
  • 74
    • 47649096991 scopus 로고    scopus 로고
    • Structural Biology of the Tumor Suppressor p53
    • Joerger AC, Fersht AR, (2008) Structural Biology of the Tumor Suppressor p53. Annu. Rev. Biochem (77):: 557-82.
    • (2008) Annu. Rev. Biochem , Issue.77 , pp. 557-582
    • Joerger, A.C.1    Fersht, A.R.2
  • 75
    • 0037816165 scopus 로고    scopus 로고
    • Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis
    • Kato S, Han SY, Liu W, Otsuka K, Shibata H, et al. (2003) Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci U S A 100: 8424-8429.
    • (2003) Proc Natl Acad Sci U S A , vol.100 , pp. 8424-8429
    • Kato, S.1    Han, S.Y.2    Liu, W.3    Otsuka, K.4    Shibata, H.5
  • 76
    • 67649832959 scopus 로고    scopus 로고
    • p53: Structure, Function and Therapeutic Applications
    • Bai L, Zhu W-G, (2006) p53: Structure, Function and Therapeutic Applications. Journal of Cancer Molecules 2(4): 141-153.
    • (2006) Journal of Cancer Molecules , vol.2 , Issue.4 , pp. 141-153
    • Bai, L.1    Zhu, W.-G.2
  • 77
    • 77955199287 scopus 로고    scopus 로고
    • Analysis and prediction of the metabolic stability of proteins based on their sequential features, sub cellular locations and interaction networks
    • Huang T, Shi XH, Wang P, He Z, Feng KY, et al. (2010) Analysis and prediction of the metabolic stability of proteins based on their sequential features, sub cellular locations and interaction networks. PLoS ONE 5(6): e10972.
    • (2010) PLoS ONE , vol.5 , Issue.6
    • Huang, T.1    Shi, X.H.2    Wang, P.3    He, Z.4    Feng, K.Y.5
  • 78
    • 77955645823 scopus 로고    scopus 로고
    • Prediction of Deleterious Non-Synonymous SNPs Based on Protein Interaction Network and Hybrid Properties
    • Huang T, Wang P, Ye ZQ, Xu H, He Z, et al. (2010) Prediction of Deleterious Non-Synonymous SNPs Based on Protein Interaction Network and Hybrid Properties. PLoS ONE 5(7): e11900.
    • (2010) PLoS ONE , vol.5 , Issue.7
    • Huang, T.1    Wang, P.2    Ye, Z.Q.3    Xu, H.4    He, Z.5
  • 79
    • 79251548286 scopus 로고    scopus 로고
    • Analysis and prediction of translation rate based on sequence and functional features of the mRNA
    • Huang T, Wan S, Xu Z, Zheng Y, Feng KY, et al. (2011) Analysis and prediction of translation rate based on sequence and functional features of the mRNA. PLoS ONE 2011 6(1): e16036.
    • (2011) PLoS ONE 2011 , vol.6 , Issue.1
    • Huang, T.1    Wan, S.2    Xu, Z.3    Zheng, Y.4    Feng, K.Y.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.