-
1
-
-
0001840999
-
Nitrogen metabolism in Saccharomyces cerevisiae
-
(Strathern, J N., Jones, E. W., and Broach, J. R., eds), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
-
Cooper, T. G. (1982) Nitrogen metabolism in Saccharomyces cerevisiae, in Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression (Strathern, J. N., Jones, E. W., and Broach, J. R., eds) pp. 39-99, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
-
(1982)
Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression
, pp. 39-99
-
-
Cooper, T.G.1
-
2
-
-
0032750741
-
Nitrogen catabolite repression in Saccharomyces cerevisiae
-
Hofman-Bang, J. (1999) Nitrogen catabolite repression in Saccharomyces cerevisiae. Mol. Biotechnol. 12, 35-73
-
(1999)
Mol. Biotechnol.
, vol.12
, pp. 35-73
-
-
Hofman-Bang, J.1
-
3
-
-
0037094434
-
Nitrogen regulation in Saccharomyces cerevisiae
-
Magasanik, B., and Kaiser, C. A. (2002) Nitrogen regulation in Saccharomyces cerevisiae. Gene 290, 1-18
-
(2002)
Gene
, vol.290
, pp. 1-18
-
-
Magasanik, B.1
Kaiser, C.A.2
-
4
-
-
17644369410
-
Integrated regulation of the nitrogen-carbon interface
-
(Winderickx, J, and Taylor, P. M., eds), Chapter 9, Springer-Verlag Berlin-Heidelberg
-
Cooper, T. G. (2004) Integrated regulation of the nitrogen-carbon interface, in Nutrient-induced Responses in Eukaryotic Cells: Topics in Current Genetics (Winderickx, J., and Taylor, P. M., eds) Vol. 7, Chapter 9, pp. 225-257, Springer-Verlag Berlin-Heidelberg
-
(2004)
Nutrient-induced Responses in Eukaryotic Cells: Topics in Current Genetics
, vol.7
, pp. 225-257
-
-
Cooper, T.G.1
-
5
-
-
84866076360
-
Nutritional control of growth and development in yeast
-
Broach J. R. (2012) Nutritional control of growth and development in yeast. Genetics 192, 73-105
-
(2012)
Genetics
, vol.192
, pp. 73-105
-
-
Broach, J.R.1
-
6
-
-
0029785920
-
Interaction of the GATA factor Gln3p with the nitrogen regulator Ure2p in Saccharomyces cerevisiae
-
Blinder, D., Coschigano, P. W., and Magasanik, B. (1996) Interaction of the GATA factor Gln3p with the nitrogen regulator Ure2p in Saccharomyces cerevisiae. J. Bacteriol. 178, 4734-4736
-
(1996)
J. Bacteriol.
, vol.178
, pp. 4734-4736
-
-
Blinder, D.1
Coschigano, P.W.2
Magasanik, B.3
-
7
-
-
0033540030
-
The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors
-
Beck, T., and Hall, M. N. (1999) The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402, 689-692
-
(1999)
Nature
, vol.402
, pp. 689-692
-
-
Beck, T.1
Hall, M.N.2
-
8
-
-
0034680772
-
Tripartite regulation of Gln3p by TOR, Ure2p, and phosphatases
-
Bertram, P. G., Choi, J. H., Carvalho, J., Ai, W., Zeng, C., Chan, T. F., and Zheng, X. F. (2000) Tripartite regulation of Gln3p by TOR, Ure2p, and phosphatases. J. Biol. Chem. 275, 35727-35733
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 35727-35733
-
-
Bertram, P.G.1
Choi, J.H.2
Carvalho, J.3
Ai, W.4
Zeng, C.5
Chan, T.F.6
Zheng, X.F.7
-
9
-
-
0034640545
-
Nitrogen catabolite repression of DAL80 expression depends on the relative levels of Gat1p and Ure2p production in Saccharomyces cerevisiae
-
Cunningham, T. S., Andhare, R., and Cooper, T. G. (2000) Nitrogen catabolite repression of DAL80 expression depends on the relative levels of Gat1p and Ure2p production in Saccharomyces cerevisiae. J. Biol. Chem. 275, 14408-14414
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 14408-14414
-
-
Cunningham, T.S.1
Andhare, R.2
Cooper, T.G.3
-
10
-
-
0033592983
-
Rapamycin-modulated transcription defines the subset of nutrient- sensitive signaling pathways directly controlled by the Tor proteins
-
U.S.A.
-
Hardwick, J. S., Kuruvilla, F. G., Tong, J. K., Shamji, A. F., and Schreiber, S. L. (1999) Rapamycin-modulated transcription defines the subset of nutrient- sensitive signaling pathways directly controlled by the Tor proteins. Proc. Natl. Acad. Sci. U.S.A. 96, 14866-14870
-
(1999)
Proc. Natl. Acad. Sci.
, vol.96
, pp. 14866-14870
-
-
Hardwick, J.S.1
Kuruvilla, F.G.2
Tong, J.K.3
Shamji, A.F.4
Schreiber, S.L.5
-
11
-
-
0033573016
-
TheTORsignaling cascade regulates gene expression in response to nutrients
-
Cardenas, M. E., Cutler, N. S., Lorenz, M. C., Di Como, C. J., and Heitman, J. (1999) TheTORsignaling cascade regulates gene expression in response to nutrients. Genes Dev. 13, 3271-3279
-
(1999)
Genes Dev.
, vol.13
, pp. 3271-3279
-
-
Cardenas, M.E.1
Cutler, N.S.2
Lorenz, M.C.3
Di Como, C.J.4
Heitman, J.5
-
12
-
-
0037930811
-
Domains of Gln3p interacting with karyopherins, Ure2p, and the target of rapamycin protein
-
Carvalho, J., and Zheng, X. F. (2003) Domains of Gln3p interacting with karyopherins, Ure2p, and the target of rapamycin protein. J. Biol. Chem. 278, 16878-16886
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 16878-16886
-
-
Carvalho, J.1
Zheng, X.F.2
-
13
-
-
0033577745
-
Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast
-
Jiang, Y., and Broach, J. R. (1999) Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast. EMBO J. 18, 2782-2792
-
(1999)
EMBO J.
, vol.18
, pp. 2782-2792
-
-
Jiang, Y.1
Broach, J.R.2
-
14
-
-
0035930339
-
TIP41 interacts with TAP42 and negatively regulates the TOR signaling pathway
-
Jacinto, E., Guo, B., Arndt, K. T., Schmelzle, T., and Hall, M. N. (2001) TIP41 interacts with TAP42 and negatively regulates the TOR signaling pathway. Mol. Cell 8, 1017-1026
-
(2001)
Mol. Cell
, vol.8
, pp. 1017-1026
-
-
Jacinto, E.1
Guo, B.2
Arndt, K.T.3
Schmelzle, T.4
Hall, M.N.5
-
15
-
-
0037076314
-
The TORcontrolled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine
-
Crespo, J. L., Powers, T., Fowler, B., and Hall, M. N. (2002) The TORcontrolled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine. Proc. Natl. Acad. Sci. U.S.A. 99, 6784-6789
-
(2002)
Proc. Natl. Acad. Sci. U.S.A.
, vol.99
, pp. 6784-6789
-
-
Crespo, J.L.1
Powers, T.2
Fowler, B.3
Hall, M.N.4
-
16
-
-
0344824568
-
Interaction with Tap42 is required for the essential function of Sit4 and type 2A phosphatases
-
Wang, H., Wang, X., and Jiang, Y. (2003) Interaction with Tap42 is required for the essential function of Sit4 and type 2A phosphatases. Mol. Biol. Cell 14, 4342-4351
-
(2003)
Mol. Biol. Cell
, vol.14
, pp. 4342-4351
-
-
Wang, H.1
Wang, X.2
Jiang, Y.3
-
17
-
-
17344381954
-
Multiple roles of Tap42 in mediating rapamycin-induced transcriptional changes in yeast
-
Düvel, K., Santhanam, A., Garrett, S., Schneper, L., Broach, J. R. (2003) Multiple roles of Tap42 in mediating rapamycin-induced transcriptional changes in yeast. Mol. Cell 11, 1467-1478
-
(2003)
Mol. Cell
, vol.11
, pp. 1467-1478
-
-
Düvel, K.1
Santhanam, A.2
Garrett, S.3
Schneper, L.4
Broach, J.R.5
-
18
-
-
0034649569
-
Partitioning the transcriptional program induced by rapamycin among the effectors of the Tor proteins
-
Shamji, A. F., Kuruvilla, F. G., and Schreiber, S. L. (2000) Partitioning the transcriptional program induced by rapamycin among the effectors of the Tor proteins. Curr. Biol. 10, 1574-1581
-
(2000)
Curr. Biol.
, vol.10
, pp. 1574-1581
-
-
Shamji, A.F.1
Kuruvilla, F.G.2
Schreiber, S.L.3
-
19
-
-
0029808294
-
Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases
-
Di Como, C. J., and Arndt, K. T. (1996) Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev. 10, 1904-1916
-
(1996)
Genes Dev.
, vol.10
, pp. 1904-1916
-
-
Di Como, C.J.1
Arndt, K.T.2
-
20
-
-
0037020146
-
Cytoplasmic compartmentation of Gln3 during nitrogen catabolite repression and the mechanism of its nuclear localization during carbon starvation in Saccharomyces cerevisiae
-
Cox, K. H., Tate, J. J., and Cooper, T. G. (2002) Cytoplasmic compartmentation of Gln3 during nitrogen catabolite repression and the mechanism of its nuclear localization during carbon starvation in Saccharomyces cerevisiae. J. Biol. Chem. 277, 37559-37566
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 37559-37566
-
-
Cox, K.H.1
Tate, J.J.2
Cooper, T.G.3
-
21
-
-
2442475353
-
Actin cytoskeleton is required for nuclear accumulation of Gln3 in response to nitrogen limitation but not rapamycin treatment in Saccharomyces cerevisiae
-
Cox, K. H., Tate, J. J., and Cooper, T. G. (2004) Actin cytoskeleton is required for nuclear accumulation of Gln3 in response to nitrogen limitation but not rapamycin treatment in Saccharomyces cerevisiae. J. Biol. Chem. 279, 19294-19301
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 19294-19301
-
-
Cox, K.H.1
Tate, J.J.2
Cooper, T.G.3
-
22
-
-
1642266344
-
Gln3 phosphorylation and intracellular localization in nutrient limitation and starvation differ from those generated by rapamycin inhibition of Tor1/2 in Saccharomyces cerevisiae
-
Cox, K. H., Kulkarni, A., Tate, J. J., and Cooper, T. G. (2004) Gln3 phosphorylation and intracellular localization in nutrient limitation and starvation differ from those generated by rapamycin inhibition of Tor1/2 in Saccharomyces cerevisiae. J. Biol. Chem. 279, 10270-10278
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 10270-10278
-
-
Cox, K.H.1
Kulkarni, A.2
Tate, J.J.3
Cooper, T.G.4
-
23
-
-
33846007281
-
Saccharomyces cerevisiae Sit4 phosphatase is active irrespective of the nitrogen source provided, and Gln3 phosphorylation levels become nitrogen source-responsive in a sit4-deleted strain
-
Tate, J. J., Feller, A., Dubois, E., and Cooper, T. G. (2006) Saccharomyces cerevisiae Sit4 phosphatase is active irrespective of the nitrogen source provided, and Gln3 phosphorylation levels become nitrogen source-responsive in a sit4-deleted strain. J. Biol. Chem. 281, 37980-37992
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 37980-37992
-
-
Tate, J.J.1
Feller, A.2
Dubois, E.3
Cooper, T.G.4
-
24
-
-
33747626107
-
Rapamycin activates Tap42-associated phosphatases by abrogating their association with Tor complex 1
-
Yan, G., Shen, X., and Jiang, Y. (2006) Rapamycin activates Tap42-associated phosphatases by abrogating their association with Tor complex 1. EMBO J. 25, 3546-3555
-
(2006)
EMBO J.
, vol.25
, pp. 3546-3555
-
-
Yan, G.1
Shen, X.2
Jiang, Y.3
-
25
-
-
34547121478
-
Stress-responsive Gln3 localization in Saccharomyces cerevisiae is separable from and can overwhelm nitrogen source regulation
-
Tate, J. J., and Cooper, T. G. (2007) Stress-responsive Gln3 localization in Saccharomyces cerevisiae is separable from and can overwhelm nitrogen source regulation. J. Biol. Chem. 282, 18467-18480
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 18467-18480
-
-
Tate, J.J.1
Cooper, T.G.2
-
26
-
-
44049095588
-
Tor pathway control of the nitrogen-responsive DAL5 gene bifurcates at the level of Gln3 and Gat1 regulation in Saccharomyces cerevisiae
-
Georis, I., Tate, J. J., Cooper, T. G., and Dubois, E. (2008) Tor pathway control of the nitrogen-responsive DAL5 gene bifurcates at the level of Gln3 and Gat1 regulation in Saccharomyces cerevisiae. J. Biol. Chem. 283, 8919-8929
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 8919-8929
-
-
Georis, I.1
Tate, J.J.2
Cooper, T.G.3
Dubois, E.4
-
27
-
-
44449165125
-
Nuclear translocation of Gln3 in response to nutrient signals requires Golgi-to-endosome trafficking in Saccharomyces cerevisiae
-
Puria, R., Zurita-Martinez, S. A, and Cardenas, M. E. (2008) Nuclear translocation of Gln3 in response to nutrient signals requires Golgi-to-endosome trafficking in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 105, 7194-7199
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 7194-7199
-
-
Puria, R.1
Zurita-Martinez, S.A.2
Cardenas, M.E.3
-
28
-
-
59049104862
-
Rapamycin- induced Gln3 dephosphorylation is insufficient for nuclear localization. Sit4 and PP2A phosphatases are regulated and function differently
-
Tate, J. J., Georis, I., Feller, A., Dubois, E., and Cooper, T. G. (2009) Rapamycin- induced Gln3 dephosphorylation is insufficient for nuclear localization. Sit4 and PP2A phosphatases are regulated and function differently. J. Biol. Chem. 284, 2522-2534
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 2522-2534
-
-
Tate, J.J.1
Georis, I.2
Feller, A.3
Dubois, E.4
Cooper, T.G.5
-
29
-
-
77952934628
-
Distinct phosphatase requirements and GATA factor responses to nitrogen catabolite repression and rapamycin treatment in Saccharomyces cerevisiae
-
Tate, J. J., Georis, I., Dubois, E., and Cooper, T. G. (2010) Distinct phosphatase requirements and GATA factor responses to nitrogen catabolite repression and rapamycin treatment in Saccharomyces cerevisiae. J. Biol. Chem. 285, 17880-17895
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 17880-17895
-
-
Tate, J.J.1
Georis, I.2
Dubois, E.3
Cooper, T.G.4
-
30
-
-
78751694872
-
Intranuclear function for protein phosphatase 2A. Pph21 and Pph22 are required for rapamycin-induced GATA factor binding to the DAL5 promoter in yeast
-
Georis, I., Tate, J. J., Feller, A., Cooper, T. G., and Dubois, E. (2011) Intranuclear function for protein phosphatase 2A. Pph21 and Pph22 are required for rapamycin-induced GATA factor binding to the DAL5 promoter in yeast. Mol. Cell Biol. 31, 92-104
-
(2011)
Mol. Cell Biol.
, vol.31
, pp. 92-104
-
-
Georis, I.1
Tate, J.J.2
Feller, A.3
Cooper, T.G.4
Dubois, E.5
-
31
-
-
84455192426
-
Nitrogen-responsive regulation of GATA protein family activators Gln3 and Gat1 occurs by two distinct pathways, one inhibited by rapamycin and the other by methionine sulfoximine
-
Georis, I., Tate, J. J., Cooper, T. G., and Dubois, E. (2011) Nitrogen-responsive regulation of GATA protein family activators Gln3 and Gat1 occurs by two distinct pathways, one inhibited by rapamycin and the other by methionine sulfoximine. J. Biol. Chem. 286, 44897-44912
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 44897-44912
-
-
Georis, I.1
Tate, J.J.2
Cooper, T.G.3
Dubois, E.4
-
32
-
-
77958031723
-
The rapamycin-sensitive phospho-proteome reveals that. TOR controls protein kinase A toward some but not all substrates
-
Soulard, A., Cremonesi, A., Moes, S., Schütz, F., Jenö, P., and Hall, M. N. (2010) The rapamycin-sensitive phospho-proteome reveals that TOR controls protein kinase A toward some but not all substrates. Mol. Biol. Cell 21, 3475-3486
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 3475-3486
-
-
Soulard, A.1
Cremonesi, A.2
Moes, S.3
Schütz, F.4
Jenö, P.5
Hall, M.N.6
-
33
-
-
77953077420
-
A global protein kinase and phosphatase interaction network in yeast
-
Breitkreutz, A., Choi, H., Sharom, J. R., Boucher, L., Neduva, V., Larsen, B., Lin, Z. Y., Breitkreutz, B. J., Stark, C., Liu, G., Ahn, J., Dewar-Darch, D., Reguly, T., Tang, X., Almeida, R., Qin, Z. S., Pawson, T., Gingras, A. C., Nesvizhskii, A. I., and Tyers, M. (2010) A global protein kinase and phosphatase interaction network in yeast. Science 328, 1043-1046
-
(2010)
Science
, vol.328
, pp. 1043-1046
-
-
Breitkreutz, A.1
Choi, H.2
Sharom, J.R.3
Boucher, L.4
Neduva, V.5
Larsen, B.6
Lin, Z.Y.7
Breitkreutz, B.J.8
Stark, C.9
Liu, G.10
Ahn, J.11
Dewar-Darch, D.12
Reguly, T.13
Tang, X.14
Almeida, R.15
Qin, Z.S.16
Pawson, T.17
Gingras, A.C.18
Nesvizhskii, A.I.19
Tyers, M.20
more..
-
34
-
-
69249240179
-
Characterization of the rapamycinsensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis
-
Huber, A., Bodenmiller, B., Uotila, A., Stahl, M., Wanka, S., Gerrits, B., Aebersold, R., and Loewith, R. (2009) Characterization of the rapamycinsensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis. Genes Dev. 23, 1929-1943
-
(2009)
Genes Dev.
, vol.23
, pp. 1929-1943
-
-
Huber, A.1
Bodenmiller, B.2
Uotila, A.3
Stahl, M.4
Wanka, S.5
Gerrits, B.6
Aebersold, R.7
Loewith, R.8
-
35
-
-
34249813098
-
Sch9 is a major target of TORC1 in Saccharomyces cerevisiae
-
Urban, J., Soulard, A., Huber, A., Lippman, S., Mukhopadhyay, D., Deloche, O., Wanke, V., Anrather, D., Ammerer, G., Riezman, H., Broach, J. R., De Virgilio, C., Hall, M. N., and Loewith, R. (2007) Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol. Cell 26, 663-674
-
(2007)
Mol. Cell
, vol.26
, pp. 663-674
-
-
Urban, J.1
Soulard, A.2
Huber, A.3
Lippman, S.4
Mukhopadhyay, D.5
Deloche, O.6
Wanke, V.7
Anrather, D.8
Ammerer, G.9
Riezman, H.10
Broach, J.R.11
De Virgilio, C.12
Hall, M.N.13
Loewith, R.14
-
36
-
-
33645092389
-
Differing responses of Gat1 and Gln3 phosphorylation and localization to rapamycin and methionine sulfoximine treatment in Saccharomyces cerevisiae
-
D. Kulkarni, A., Buford, T. D., Rai, R., and Cooper, T. G. (2006) Differing responses of Gat1 and Gln3 phosphorylation and localization to rapamycin and methionine sulfoximine treatment in Saccharomyces cerevisiae. FEMS Yeast Res. 6, 218-229
-
(2006)
FEMS Yeast Res.
, vol.6
, pp. 218-229
-
-
Kulkarni A, D.1
Buford, T.D.2
Rai, R.3
Cooper, T.G.4
-
37
-
-
37849030140
-
Activation of the SPS amino acid-sensing pathway in Saccharomyces cerevisiae correlates with the phosphorylation state of a sensor component
-
Liu, Z., Thornton, J., Spírek, M., and Butow, R. A. (2008) Activation of the SPS amino acid-sensing pathway in Saccharomyces cerevisiae correlates with the phosphorylation state of a sensor component, Ptr3. Mol. Cell. Biol. 28, 551-563
-
(2008)
Ptr3. Mol. Cell. Biol.
, vol.28
, pp. 551-563
-
-
Liu, Z.1
Thornton, J.2
Spírek, M.3
Butow, R.A.4
-
38
-
-
66949135018
-
Reproducible methods
-
Editorial
-
Editorial (2009) Reproducible methods. Nat. Cell Biol. 11, 667
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 667
-
-
-
39
-
-
0025999296
-
Sequence and expression of GLN3, a positive nitrogen regulatory gene of Saccharomyces cerevisiae encoding a protein with a putative zinc finger DNA-binding domain
-
Minehart, P. L., and Magasanik, B. (1991) Sequence and expression of GLN3, a positive nitrogen regulatory gene of Saccharomyces cerevisiae encoding a protein with a putative zinc finger DNA-binding domain. Mol. Cell Biol. 11, 6216-6228
-
(1991)
Mol. Cell Biol.
, vol.11
, pp. 6216-6228
-
-
Minehart, P.L.1
Magasanik, B.2
-
40
-
-
77954287478
-
Protein annotation and modelling servers at University College London
-
A. Buchan, D. W., Ward, S. M., Lobley, A. E., Nugent, T. C., Bryson, K., and Jones, D. T. (2010) Protein annotation and modelling servers at University College London. Nucleic Acids Res. 38, (suppl.) W563-W568
-
(2010)
Nucleic Acids Res.
, vol.38
, Issue.SUPPL.
-
-
Buchan D W, A.1
Ward, S.M.2
Lobley, A.E.3
Nugent, T.C.4
Bryson, K.5
Jones, D.T.6
-
41
-
-
0033578684
-
Protein secondary structure prediction based on position- specific scoring matrices
-
Jones, D. T. (1999) Protein secondary structure prediction based on position- specific scoring matrices. J. Mol. Biol. 292, 195-202
-
(1999)
J. Mol. Biol.
, vol.292
, pp. 195-202
-
-
Jones, D.T.1
-
42
-
-
0035943726
-
Gln3p nuclear localization and interaction with Ure2p in Saccharomyces cerevisiae
-
Kulkarni, A. A., Abul-Hamd, A. T., Rai, R., El Berry, H., and Cooper, T. G. (2001) Gln3p nuclear localization and interaction with Ure2p in Saccharomyces cerevisiae. J. Biol. Chem. 276, 32136-32144
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 32136-32144
-
-
Kulkarni, A.A.1
Abul-Hamd, A.T.2
Rai, R.3
El Berry, H.4
Cooper, T.G.5
-
43
-
-
0034629143
-
Functional domain mapping and subcellular distribution of Dal82p in Saccharomyces cerevisiae
-
Scott, S., Dorrington, R., Svetlov, V., Beeser, A. E., Distler, M., and Cooper, T. G. (2000) Functional domain mapping and subcellular distribution of Dal82p in Saccharomyces cerevisiae. J. Biol. Chem. 275, 7198-7204
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 7198-7204
-
-
Scott, S.1
Dorrington, R.2
Svetlov, V.3
Beeser, A.E.4
Distler, M.5
Cooper, T.G.6
-
44
-
-
0034613178
-
Roles of the Dal82p domains in allophanate/oxalurate- dependent gene expression in Saccharomyces cerevisiae
-
Scott, S., Abul-Hamd, A. T., and Cooper, T. G. (2000) Roles of the Dal82p domains in allophanate/oxalurate- dependent gene expression in. Saccharomyces cerevisiae. J. Biol. Chem. 275, 30886-30893
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 30886-30893
-
-
Scott, S.1
Abul-Hamd, A.T.2
Cooper, T.G.3
-
45
-
-
0025776523
-
Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast
-
Heitman, J., Movva, N. R., and Hall, M. N. (1991) Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253, 905-909
-
(1991)
Science
, vol.253
, pp. 905-909
-
-
Heitman, J.1
Movva, N.R.2
Hall, M.N.3
-
46
-
-
0026012156
-
FK 506-binding protein proline rotamase is a target for the immunosuppressive agent FK 506 in Saccharomyces cerevisiae
-
Heitman, J., Movva, N. R., Hiestand, P. C., and Hall, M. N. (1991) FK 506-binding protein proline rotamase is a target for the immunosuppressive agent FK 506 in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 88, 1948-1952
-
(1991)
Proc. Natl. Acad. Sci. U.S.A.
, vol.88
, pp. 1948-1952
-
-
Heitman, J.1
Movva, N.R.2
Hiestand, P.C.3
Hall, M.N.4
-
47
-
-
0030455820
-
Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast
-
James, P., Halladay, J., and Craig, E. A. (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425-1436
-
(1996)
Genetics
, vol.144
, pp. 1425-1436
-
-
James, P.1
Halladay, J.2
Craig, E.A.3
|