메뉴 건너뛰기




Volumn 20, Issue 3, 2013, Pages 261-264

Variational bayesian view of weighted trace norm regularization for matrix factorization

Author keywords

Collaborative prediction; matrix completion; matrix factorization; trace norm regularization; variational Bayesian inference

Indexed keywords

COLLABORATIVE PREDICTIONS; MATRIX COMPLETION; MATRIX FACTORIZATIONS; TRACE-NORMS; VARIATIONAL BAYESIAN INFERENCES;

EID: 84873675681     PISSN: 10709908     EISSN: None     Source Type: Journal    
DOI: 10.1109/LSP.2013.2242468     Document Type: Article
Times cited : (11)

References (16)
  • 1
    • 46249124832 scopus 로고    scopus 로고
    • Consistency of trace norm minimization
    • F. R. Bach, "Consistency of trace norm minimization," J.Mach. Learn. Res., vol. 8, pp. 1019-1048, 2008.
    • (2008) J.Mach. Learn. Res. , vol.8 , pp. 1019-1048
    • Bach, F.R.1
  • 2
    • 77951528523 scopus 로고    scopus 로고
    • The power of convex relaxation: Near-optimal matrix completion
    • E. Candès and T. Tao, "The power of convex relaxation: Near-optimal matrix completion," IEEE Trans. Inf. Theory, vol. 56, no. 5, pp. 2053-2080, 2009.
    • (2009) IEEE Trans. Inf. Theory , vol.56 , Issue.5 , pp. 2053-2080
    • Candès, E.1    Tao, T.2
  • 5
    • 77956916974 scopus 로고    scopus 로고
    • Practical approaches to principal component analysis in the presence of missing values
    • A. Ilin and T. Raiko, "Practical approaches to principal component analysis in the presence of missing values," J. Mach. Learn. Res., vol. 11, pp. 1957-2000, 2010.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 1957-2000
    • Ilin, A.1    Raiko, T.2
  • 6
    • 77956909553 scopus 로고    scopus 로고
    • Matrix completion from noisy entries
    • R. H. Keshavan, A. Montanari, and S. Oh, "Matrix completion from noisy entries," J. Mach. Learn. Res., vol. 11, pp. 2057-2078, 2010.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 2057-2078
    • Keshavan, R.H.1    Montanari, A.2    Oh, S.3
  • 7
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Y. Koren, R. Bell, and C. Volinsky, "Matrix factorization techniques for recommender systems," IEEE Comput., vol. 42, no. 8, pp. 30-37, 2009.
    • (2009) IEEE Comput. , vol.42 , Issue.8 , pp. 30-37
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 8
    • 48249140327 scopus 로고    scopus 로고
    • Variational Bayesian approach to movie rating prediction
    • San Jose, CA
    • Y. J. Lim and Y. W. Teh, "Variational Bayesian approach to movie rating prediction," in Proc. KDD Cup and Workshop, San Jose, CA, 2007.
    • (2007) Proc. KDD Cup and Workshop
    • Lim, Y.J.1    Teh, Y.W.2
  • 9
    • 77956502504 scopus 로고    scopus 로고
    • Implicit regularization in variational Bayesian matrix factorization
    • Haifa, Israel
    • S. Nakajima and M. Sugiyama, "Implicit regularization in variational Bayesian matrix factorization," in Proc. Int. Conf. on Mach. Learning (ICML), Haifa, Israel, 2010.
    • (2010) Proc. Int. Conf. on Mach. Learning (ICML)
    • Nakajima, S.1    Sugiyama, M.2
  • 11
    • 84856009825 scopus 로고    scopus 로고
    • A simpler approach to matrix completion
    • B. Recht, "A simpler approach to matrix completion," J. Mach. Learn. Res., vol. 12, pp. 3413-3430, 2011.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 3413-3430
    • Recht, B.1
  • 12
    • 85161986396 scopus 로고    scopus 로고
    • Collaborative filtering in a non-uniform world: Learning with weighted trace norm
    • Cambridge,MA, USA: MIT Press
    • R. Salakhutdinov and N. Srebro, "Collaborative filtering in a non-uniform world: Learning with weighted trace norm," in Advances in Neural Information Processing Systems (NIPS). Cambridge,MA, USA: MIT Press, 2010, vol. 23.
    • (2010) Advances in Neural Information Processing Systems (NIPS) , pp. 23
    • Salakhutdinov, R.1    Srebro, N.2
  • 15
    • 64149121935 scopus 로고    scopus 로고
    • Scalable collaborative filtering approaches for large recommender systems
    • G. Takács, I. Pilászy, B. Németh, and D. Tikk, "Scalable collaborative filtering approaches for large recommender systems," J. Mach. Learn. Res., vol. 10, pp. 623-656, 2009.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 623-656
    • Takács, G.1    Pilászy, I.2    Németh, B.3    Tikk, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.