메뉴 건너뛰기




Volumn 13, Issue , 2012, Pages 1745-1808

Variational multinomial logit gaussian process

Author keywords

Gaussian process; Multinomial logistic; Probabilistic classification; Sparse approximation; Variational approximation

Indexed keywords

GAUSSIAN PROCESSES; MULTINOMIALS; PROBABILISTIC CLASSIFICATION; SPARSE APPROXIMATIONS; VARIATIONAL APPROXIMATION;

EID: 84864936855     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (33)

References (52)
  • 1
    • 0001079995 scopus 로고
    • Concavity of certain maps on positive definite matrices and applications to Hadamard products
    • T. Ando. Concavity of certain maps on positive definite matrices and applications to Hadamard products. Linear Algebra and Its Applications, 26:203-241, 1979.
    • (1979) Linear Algebra and Its Applications , vol.26 , pp. 203-241
    • Ando, T.1
  • 2
    • 0000492326 scopus 로고
    • Learning from noisy examples
    • D. Angluin and P. Laird. Learning from noisy examples. Machine Learning, 2:343-370, 1988.
    • (1988) Machine Learning , vol.2 , pp. 343-370
    • Angluin, D.1    Laird, P.2
  • 4
    • 85161977902 scopus 로고    scopus 로고
    • Williams. Multi-task Gaussian process prediction
    • J. Platt, D. Koller, Y. Singer, and S. Roweis, editors. Curran Associates, Inc
    • E. V. Bonilla, K. M. A. Chai, and C. K. I. Williams. Multi-task Gaussian process prediction. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems, volume 20, pages 153-160. Curran Associates, Inc., 2008.
    • (2008) Advances in Neural Information Processing Systems , vol.20 , pp. 153-160
    • Bonilla, E.V.1    Chai, K.M.A.2    Williams, C.K.I.3
  • 6
    • 0000583248 scopus 로고
    • Probabilistic interpretation of feedforward classification network outputs with relationships to statistical pattern recognition
    • NATO ASI Series in Systems and Computer Science. Springer
    • J. S. Bridle. Probabilistic interpretation of feedforward classification network outputs with relationships to statistical pattern recognition. In Neuro-computing: Algorithms, Architectures and Applications, NATO ASI Series in Systems and Computer Science. Springer, 1989.
    • (1989) Neuro-computing: Algorithms, Architectures and Applications
    • Bridle, J.S.1
  • 7
    • 84862280449 scopus 로고    scopus 로고
    • Concave Gaussian variational approximations for inference in large-scale Bayesian linear models
    • In D. Dunson and M. Dudk, editors,volume 15 of JMLR: Workshop and Conference Proceedings Series
    • E. Challis and D. Barber. Concave Gaussian variational approximations for inference in large-scale Bayesian linear models. In D. Dunson and M. Dudk, editors, Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, volume 15 of JMLR: Workshop and Conference Proceedings Series, 2011.
    • (2011) Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics
    • Challis, E.1    Barber, D.2
  • 8
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel-based vector machines
    • K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector machines. Journal of Machine Learning Research, 2:265-292, 2001.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 9
    • 0038891993 scopus 로고    scopus 로고
    • Sparse online Gaussian processes
    • L. Csat́o andM. Opper. Sparse online Gaussian processes. Neural Computation, 14:641-668, 2002.
    • (2002) Neural Computation , vol.14 , pp. 641-668
    • Csat́o, L.1    Opper, M.2
  • 11
    • 84949782445 scopus 로고    scopus 로고
    • Wiley Series in Probability and Statistics. John Wiley & Sons, Inc., New Jersey
    • J. Geweke. Contemporary Bayesian Econometrics and Statistics. Wiley Series in Probability and Statistics. John Wiley & Sons, Inc., New Jersey, 2005.
    • (2005) Contemporary Bayesian Econometrics and Statistics
    • Geweke, J.1
  • 12
    • 0348177721 scopus 로고
    • Alternative computational approaches to inference in the multinomial probit model
    • J. Geweke, M. P. Keane, and D. Runkle. Alternative computational approaches to inference in the multinomial probit model. The Review of Economics and Statistics, 76(4):609-32, 1994.
    • (1994) The Review of Economics and Statistics , vol.76 , Issue.4 , pp. 609-32
    • Geweke, J.1    Keane, M.P.2    Runkle, D.3
  • 14
    • 84898934543 scopus 로고    scopus 로고
    • Variational inference for Bayesian mixtures of factor analysers
    • S. A. Solla, T. K. Leen, and K.-R. M̈uller, editors,MIT Press, Cambridge, MA
    • Z. Ghahramani and M. J. Beal. Variational inference for Bayesian mixtures of factor analysers. In S. A. Solla, T. K. Leen, and K.-R. M̈uller, editors, Advances in Neural Information Processing Systems, volume 12, pages 449-455. MIT Press, Cambridge, MA, 2000b.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 449-455
    • Ghahramani, Z.1    Beal, M.J.2
  • 16
    • 33745841370 scopus 로고    scopus 로고
    • Variational Bayesian multinomial probit regression with gaussian process priors
    • DOI 10.1162/neco.2006.18.8.1790
    • M. Girolami and S. Rogers. Variational Bayesian multinomial probit regression with Gaussian process priors. Neural Computation, 18(8):1790-1817, 2006. (Pubitemid 44036395)
    • (2006) Neural Computation , vol.18 , Issue.8 , pp. 1790-1817
    • Girolami, M.1    Rogers, S.2
  • 17
    • 0036088194 scopus 로고    scopus 로고
    • Combining discriminant models with new multi-class SVMs
    • DOI 10.1007/s100440200015
    • Y. Guermeur. Combining discriminant models with new multi-class SVMs. Pattern Analysis and Applications, 5(2):168-179, 2002. (Pubitemid 40830130)
    • (2002) Pattern Analysis and Applications , vol.5 , Issue.2 , pp. 168-179
    • Guermeur, Y.1
  • 18
    • 79954473028 scopus 로고    scopus 로고
    • A quadratic loss multi-class SVM for which a radius-margin bound applies
    • Y. Guermeur and E. Monfrini. A quadratic loss multi-class SVM for which a radius-margin bound applies. Informatica, 22(1):73-96, 2011.
    • (2011) Informatica , vol.22 , Issue.1 , pp. 73-96
    • Guermeur, Y.1    Monfrini, E.2
  • 19
    • 0041837905 scopus 로고
    • Chi squared approximations to the distribution of a sum of independent random variables
    • P. Hall. Chi squared approximations to the distribution of a sum of independent random variables. The Annals of Probability, 11(4):1028-1036, 1983.
    • (1983) The Annals of Probability , vol.11 , Issue.4 , pp. 1028-1036
    • Hall, P.1
  • 22
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • DOI 10.1109/72.991427, PII S1045922702018052
    • C.-W. Hsu and C.-J. Lin. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 13(2):415-425, 2002. (Pubitemid 34475042)
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 24
    • 85162453650 scopus 로고    scopus 로고
    • Non-conjugate variational message passing for multinomial and binary regression
    • J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, editors
    • D. A. Knowles and T. P. Minka. Non-conjugate variational message passing for multinomial and binary regression. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, editors, Advances in Neural Information Processing Systems, volume 24, pages 1701-1709. 2011.
    • (2011) Advances in Neural Information Processing Systems , vol.24 , pp. 1701-1709
    • Knowles, D.A.1    Minka, T.P.2
  • 25
    • 63149119676 scopus 로고    scopus 로고
    • Testing the assumptions behind importance sampling
    • S. J. Koopman, N. Shephard, and D. Creal. Testing the assumptions behind importance sampling. Journal of Econometrics, 149(1):2-11, 2009.
    • (2009) Journal of Econometrics , vol.149 , Issue.1 , pp. 2-11
    • Koopman, S.J.1    Shephard, N.2    Creal, D.3
  • 27
    • 80052210118 scopus 로고    scopus 로고
    • MSVMpack: A multi-class support vector machine package
    • F. Lauer and Y. Guermeur. MSVMpack: a multi-class support vector machine package. Journal of Machine Learning Research, 12:2269-2272, 2011. http://www.loria.fr/lauer/MSVMpack.
    • (2011) Journal of Machine Learning Research , vol.12 , pp. 2269-2272
    • Lauer, F.1    Guermeur, Y.2
  • 28
    • 80053225881 scopus 로고    scopus 로고
    • Fast sparse Gaussian process methods: The informative vector machine
    • Cambridge, MA,MIT Press
    • N. D. Lawrence, M. Seeger, and R. Herbrich. Fast sparse Gaussian process methods: The informative vector machine. In Advances in Neural Information Processing Systems, volume 15, pages 609-616, Cambridge, MA, 2003. MIT Press.
    • (2003) Advances in Neural Information Processing Systems , vol.15 , pp. 609-616
    • Lawrence, N.D.1    Seeger, M.2    Herbrich, R.3
  • 29
    • 84858732503 scopus 로고    scopus 로고
    • Inter-domain Gaussian processes for sparse inference using inducing features
    • Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors. Curran Associates, Inc
    • M. Ĺazaro-Gredilla and A. Figueiras-Vidal. Inter-domain Gaussian processes for sparse inference using inducing features. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems, volume 22, pages 1087-1095. Curran Associates, Inc., 2009.
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 1087-1095
    • Bengio, Y.1    Schuurmans, D.2    Lafferty, J.3    Williams, C.K.I.4    Culotta, A.5
  • 31
    • 0002297105 scopus 로고
    • Conditional logit analysis of qualitative choice behavior
    • P. Zarembka, editor,Academic Press
    • D. McFadden. Conditional logit analysis of qualitative choice behavior. In P. Zarembka, editor, Frontiers in Econometrics, pages 105-142. Academic Press, 1974.
    • (1974) Frontiers in Econometrics , pp. 105-142
    • McFadden, D.1
  • 32
    • 7444252350 scopus 로고    scopus 로고
    • T. P. Minka. Beyond Newton's method, 2002. URL http://research.microsoft. com/en-us/um/people/minka/papers/minka-newton.pdf.
    • (2002) Beyond Newton's method
    • Minka, T.P.1
  • 34
    • 0002628667 scopus 로고    scopus 로고
    • Regression and classification using Gaussian process priors
    • A. P. D. J.M. Bernardo, J. O. Berger and A. F. M. Smith, editors. Oxford University Press
    • R.M. Neal. Regression and classification using Gaussian process priors. In A. P. D. J.M. Bernardo, J. O. Berger and A. F. M. Smith, editors, Bayesian Statistics, volume 6, pages 475-501. Oxford University Press, 1998.
    • (1998) Bayesian Statistics , vol.6 , pp. 475-501
    • Neal, R.M.1
  • 35
    • 0000273048 scopus 로고    scopus 로고
    • Annealed importance sampling
    • DOI 10.1023/A:1008923215028
    • R. M. Neal. Annealed importance sampling. Statistics and Computing, 11:125-139, 2001. (Pubitemid 33638185)
    • (2001) Statistics and Computing , vol.11 , Issue.2 , pp. 125-139
    • Neal, R.M.1
  • 39
    • 56749100556 scopus 로고    scopus 로고
    • Approximation methods for Gaussian process regression
    • In L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, editors,MIT Press
    • J. Quĩnonero-Candela, C. E. Rasmussen, and C. K. I. Williams. Approximation methods for Gaussian process regression. In L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, editors, Large Scale Kernel Machines, pages 203-223. MIT Press, 2007.
    • (2007) Large Scale Kernel Machines , pp. 203-223
    • Quinonero-Candela, J.1    Rasmussen, C.E.2    Williams, C.K.I.3
  • 42
    • 0041464774 scopus 로고    scopus 로고
    • PAC-Bayesian generalisation error bounds for Gaussian process classification
    • M. Seeger. PAC-Bayesian generalisation error bounds for Gaussian process classification. Journal of Machine Learning Research, 3:233-269, 2002.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 233-269
    • Seeger, M.1
  • 44
    • 84864038646 scopus 로고    scopus 로고
    • Sparse Gaussian processes using pseudo-inputs
    • Y. Weiss, B. Scḧolkopf, and J. Platt, editors, Cambridge, MA, MIT Press
    • E. Snelson and Z. Ghahramani. Sparse Gaussian processes using pseudo-inputs. In Y. Weiss, B. Scḧolkopf, and J. Platt, editors, Advances in Neural Information Processing Systems, volume 18, pages 1257-1264, Cambridge, MA, 2006. MIT Press.
    • (2006) Advances in Neural Information Processing Systems , vol.18 , pp. 1257-1264
    • Snelson, E.1    Ghahramani, Z.2
  • 45
    • 84860609370 scopus 로고    scopus 로고
    • Variational learning of inducing variables in sparse Gaussian processes
    • D. van Dyk and M. Welling, editors, of JMLR: Workshop and Conference Proceedings Series
    • M. Titsias. Variational learning of inducing variables in sparse Gaussian processes. In D. van Dyk and M. Welling, editors, Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics, volume 5 of JMLR: Workshop and Conference Proceedings Series, pages 567-574, 2009a.
    • (2009) Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics , vol.5 , pp. 567-574
    • Titsias, M.1
  • 46
  • 48
    • 0032525527 scopus 로고    scopus 로고
    • Constructing and fitting models for cokriging and multivariable spatial prediction
    • PII S0378375897001626
    • J. M. Ver Hoef and R. P. Barry. Constructing and fitting models for cokriging and multivariable spatial prediction. Journal of Statistical Planning and Inference, 69(2):275-294, 1998. (Pubitemid 128182034)
    • (1998) Journal of Statistical Planning and Inference , vol.69 , Issue.2 , pp. 275-294
    • Ver Hoef, J.M.1    Barry, R.P.2
  • 51
    • 84899010839 scopus 로고    scopus 로고
    • Using the Nystr ̈om method to speed up kernel machines
    • T. K. Leen, T. G. Diettrich, and V. Tresp, editors, Cambridge, MA,MIT Press
    • C. K. I. Williams and M. Seeger. Using the Nystr ̈om method to speed up kernel machines. In T. K. Leen, T. G. Diettrich, and V. Tresp, editors, Advances in Neural Information Processing Systems, volume 13, pages 682-688, Cambridge, MA, 2001. MIT Press.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 682-688
    • Williams, C.K.I.1    Seeger, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.