-
1
-
-
0001079995
-
Concavity of certain maps on positive definite matrices and applications to Hadamard products
-
T. Ando. Concavity of certain maps on positive definite matrices and applications to Hadamard products. Linear Algebra and Its Applications, 26:203-241, 1979.
-
(1979)
Linear Algebra and Its Applications
, vol.26
, pp. 203-241
-
-
Ando, T.1
-
2
-
-
0000492326
-
Learning from noisy examples
-
D. Angluin and P. Laird. Learning from noisy examples. Machine Learning, 2:343-370, 1988.
-
(1988)
Machine Learning
, vol.2
, pp. 343-370
-
-
Angluin, D.1
Laird, P.2
-
4
-
-
85161977902
-
Williams. Multi-task Gaussian process prediction
-
J. Platt, D. Koller, Y. Singer, and S. Roweis, editors. Curran Associates, Inc
-
E. V. Bonilla, K. M. A. Chai, and C. K. I. Williams. Multi-task Gaussian process prediction. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems, volume 20, pages 153-160. Curran Associates, Inc., 2008.
-
(2008)
Advances in Neural Information Processing Systems
, vol.20
, pp. 153-160
-
-
Bonilla, E.V.1
Chai, K.M.A.2
Williams, C.K.I.3
-
6
-
-
0000583248
-
Probabilistic interpretation of feedforward classification network outputs with relationships to statistical pattern recognition
-
NATO ASI Series in Systems and Computer Science. Springer
-
J. S. Bridle. Probabilistic interpretation of feedforward classification network outputs with relationships to statistical pattern recognition. In Neuro-computing: Algorithms, Architectures and Applications, NATO ASI Series in Systems and Computer Science. Springer, 1989.
-
(1989)
Neuro-computing: Algorithms, Architectures and Applications
-
-
Bridle, J.S.1
-
7
-
-
84862280449
-
Concave Gaussian variational approximations for inference in large-scale Bayesian linear models
-
In D. Dunson and M. Dudk, editors,volume 15 of JMLR: Workshop and Conference Proceedings Series
-
E. Challis and D. Barber. Concave Gaussian variational approximations for inference in large-scale Bayesian linear models. In D. Dunson and M. Dudk, editors, Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, volume 15 of JMLR: Workshop and Conference Proceedings Series, 2011.
-
(2011)
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics
-
-
Challis, E.1
Barber, D.2
-
8
-
-
0010442827
-
On the algorithmic implementation of multiclass kernel-based vector machines
-
K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector machines. Journal of Machine Learning Research, 2:265-292, 2001.
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 265-292
-
-
Crammer, K.1
Singer, Y.2
-
9
-
-
0038891993
-
Sparse online Gaussian processes
-
L. Csat́o andM. Opper. Sparse online Gaussian processes. Neural Computation, 14:641-668, 2002.
-
(2002)
Neural Computation
, vol.14
, pp. 641-668
-
-
Csat́o, L.1
Opper, M.2
-
11
-
-
84949782445
-
-
Wiley Series in Probability and Statistics. John Wiley & Sons, Inc., New Jersey
-
J. Geweke. Contemporary Bayesian Econometrics and Statistics. Wiley Series in Probability and Statistics. John Wiley & Sons, Inc., New Jersey, 2005.
-
(2005)
Contemporary Bayesian Econometrics and Statistics
-
-
Geweke, J.1
-
12
-
-
0348177721
-
Alternative computational approaches to inference in the multinomial probit model
-
J. Geweke, M. P. Keane, and D. Runkle. Alternative computational approaches to inference in the multinomial probit model. The Review of Economics and Statistics, 76(4):609-32, 1994.
-
(1994)
The Review of Economics and Statistics
, vol.76
, Issue.4
, pp. 609-32
-
-
Geweke, J.1
Keane, M.P.2
Runkle, D.3
-
14
-
-
84898934543
-
Variational inference for Bayesian mixtures of factor analysers
-
S. A. Solla, T. K. Leen, and K.-R. M̈uller, editors,MIT Press, Cambridge, MA
-
Z. Ghahramani and M. J. Beal. Variational inference for Bayesian mixtures of factor analysers. In S. A. Solla, T. K. Leen, and K.-R. M̈uller, editors, Advances in Neural Information Processing Systems, volume 12, pages 449-455. MIT Press, Cambridge, MA, 2000b.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 449-455
-
-
Ghahramani, Z.1
Beal, M.J.2
-
16
-
-
33745841370
-
Variational Bayesian multinomial probit regression with gaussian process priors
-
DOI 10.1162/neco.2006.18.8.1790
-
M. Girolami and S. Rogers. Variational Bayesian multinomial probit regression with Gaussian process priors. Neural Computation, 18(8):1790-1817, 2006. (Pubitemid 44036395)
-
(2006)
Neural Computation
, vol.18
, Issue.8
, pp. 1790-1817
-
-
Girolami, M.1
Rogers, S.2
-
17
-
-
0036088194
-
Combining discriminant models with new multi-class SVMs
-
DOI 10.1007/s100440200015
-
Y. Guermeur. Combining discriminant models with new multi-class SVMs. Pattern Analysis and Applications, 5(2):168-179, 2002. (Pubitemid 40830130)
-
(2002)
Pattern Analysis and Applications
, vol.5
, Issue.2
, pp. 168-179
-
-
Guermeur, Y.1
-
18
-
-
79954473028
-
A quadratic loss multi-class SVM for which a radius-margin bound applies
-
Y. Guermeur and E. Monfrini. A quadratic loss multi-class SVM for which a radius-margin bound applies. Informatica, 22(1):73-96, 2011.
-
(2011)
Informatica
, vol.22
, Issue.1
, pp. 73-96
-
-
Guermeur, Y.1
Monfrini, E.2
-
19
-
-
0041837905
-
Chi squared approximations to the distribution of a sum of independent random variables
-
P. Hall. Chi squared approximations to the distribution of a sum of independent random variables. The Annals of Probability, 11(4):1028-1036, 1983.
-
(1983)
The Annals of Probability
, vol.11
, Issue.4
, pp. 1028-1036
-
-
Hall, P.1
-
22
-
-
0036505670
-
A comparison of methods for multiclass support vector machines
-
DOI 10.1109/72.991427, PII S1045922702018052
-
C.-W. Hsu and C.-J. Lin. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 13(2):415-425, 2002. (Pubitemid 34475042)
-
(2002)
IEEE Transactions on Neural Networks
, vol.13
, Issue.2
, pp. 415-425
-
-
Hsu, C.-W.1
Lin, C.-J.2
-
24
-
-
85162453650
-
Non-conjugate variational message passing for multinomial and binary regression
-
J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, editors
-
D. A. Knowles and T. P. Minka. Non-conjugate variational message passing for multinomial and binary regression. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, editors, Advances in Neural Information Processing Systems, volume 24, pages 1701-1709. 2011.
-
(2011)
Advances in Neural Information Processing Systems
, vol.24
, pp. 1701-1709
-
-
Knowles, D.A.1
Minka, T.P.2
-
25
-
-
63149119676
-
Testing the assumptions behind importance sampling
-
S. J. Koopman, N. Shephard, and D. Creal. Testing the assumptions behind importance sampling. Journal of Econometrics, 149(1):2-11, 2009.
-
(2009)
Journal of Econometrics
, vol.149
, Issue.1
, pp. 2-11
-
-
Koopman, S.J.1
Shephard, N.2
Creal, D.3
-
27
-
-
80052210118
-
MSVMpack: A multi-class support vector machine package
-
F. Lauer and Y. Guermeur. MSVMpack: a multi-class support vector machine package. Journal of Machine Learning Research, 12:2269-2272, 2011. http://www.loria.fr/lauer/MSVMpack.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2269-2272
-
-
Lauer, F.1
Guermeur, Y.2
-
28
-
-
80053225881
-
Fast sparse Gaussian process methods: The informative vector machine
-
Cambridge, MA,MIT Press
-
N. D. Lawrence, M. Seeger, and R. Herbrich. Fast sparse Gaussian process methods: The informative vector machine. In Advances in Neural Information Processing Systems, volume 15, pages 609-616, Cambridge, MA, 2003. MIT Press.
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
, pp. 609-616
-
-
Lawrence, N.D.1
Seeger, M.2
Herbrich, R.3
-
29
-
-
84858732503
-
Inter-domain Gaussian processes for sparse inference using inducing features
-
Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors. Curran Associates, Inc
-
M. Ĺazaro-Gredilla and A. Figueiras-Vidal. Inter-domain Gaussian processes for sparse inference using inducing features. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems, volume 22, pages 1087-1095. Curran Associates, Inc., 2009.
-
(2009)
Advances in Neural Information Processing Systems
, vol.22
, pp. 1087-1095
-
-
Bengio, Y.1
Schuurmans, D.2
Lafferty, J.3
Williams, C.K.I.4
Culotta, A.5
-
30
-
-
2142775432
-
Multicategory support vector machines
-
Y. Lee, Y. Lin, and G. Wahba. Multicategory support vector machines. Journal of the American Statistical Association, 99(465):67-81, 2004.
-
(2004)
Journal of the American Statistical Association
, vol.99
, Issue.465
, pp. 67-81
-
-
Lee, Y.1
Lin, Y.2
Wahba, G.3
-
31
-
-
0002297105
-
Conditional logit analysis of qualitative choice behavior
-
P. Zarembka, editor,Academic Press
-
D. McFadden. Conditional logit analysis of qualitative choice behavior. In P. Zarembka, editor, Frontiers in Econometrics, pages 105-142. Academic Press, 1974.
-
(1974)
Frontiers in Econometrics
, pp. 105-142
-
-
McFadden, D.1
-
32
-
-
7444252350
-
-
T. P. Minka. Beyond Newton's method, 2002. URL http://research.microsoft. com/en-us/um/people/minka/papers/minka-newton.pdf.
-
(2002)
Beyond Newton's method
-
-
Minka, T.P.1
-
34
-
-
0002628667
-
Regression and classification using Gaussian process priors
-
A. P. D. J.M. Bernardo, J. O. Berger and A. F. M. Smith, editors. Oxford University Press
-
R.M. Neal. Regression and classification using Gaussian process priors. In A. P. D. J.M. Bernardo, J. O. Berger and A. F. M. Smith, editors, Bayesian Statistics, volume 6, pages 475-501. Oxford University Press, 1998.
-
(1998)
Bayesian Statistics
, vol.6
, pp. 475-501
-
-
Neal, R.M.1
-
35
-
-
0000273048
-
Annealed importance sampling
-
DOI 10.1023/A:1008923215028
-
R. M. Neal. Annealed importance sampling. Statistics and Computing, 11:125-139, 2001. (Pubitemid 33638185)
-
(2001)
Statistics and Computing
, vol.11
, Issue.2
, pp. 125-139
-
-
Neal, R.M.1
-
38
-
-
34447551114
-
Historical introduction: Issai Schur and the early development of the Schur complement
-
F. Zhang, editor,Springer
-
S. Puntanen and G. P. H. Styan. Historical introduction: Issai Schur and the early development of the Schur complement. In F. Zhang, editor, The Schur Complement and Its Applications, Numerical Methods and Algorithms, pages 1-16. Springer, 2005.
-
(2005)
The Schur Complement and Its Applications, Numerical Methods and Algorithms
, pp. 1-16
-
-
Puntanen, S.1
Styan, G.P.H.2
-
39
-
-
56749100556
-
Approximation methods for Gaussian process regression
-
In L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, editors,MIT Press
-
J. Quĩnonero-Candela, C. E. Rasmussen, and C. K. I. Williams. Approximation methods for Gaussian process regression. In L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, editors, Large Scale Kernel Machines, pages 203-223. MIT Press, 2007.
-
(2007)
Large Scale Kernel Machines
, pp. 203-223
-
-
Quinonero-Candela, J.1
Rasmussen, C.E.2
Williams, C.K.I.3
-
42
-
-
0041464774
-
PAC-Bayesian generalisation error bounds for Gaussian process classification
-
M. Seeger. PAC-Bayesian generalisation error bounds for Gaussian process classification. Journal of Machine Learning Research, 3:233-269, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 233-269
-
-
Seeger, M.1
-
44
-
-
84864038646
-
Sparse Gaussian processes using pseudo-inputs
-
Y. Weiss, B. Scḧolkopf, and J. Platt, editors, Cambridge, MA, MIT Press
-
E. Snelson and Z. Ghahramani. Sparse Gaussian processes using pseudo-inputs. In Y. Weiss, B. Scḧolkopf, and J. Platt, editors, Advances in Neural Information Processing Systems, volume 18, pages 1257-1264, Cambridge, MA, 2006. MIT Press.
-
(2006)
Advances in Neural Information Processing Systems
, vol.18
, pp. 1257-1264
-
-
Snelson, E.1
Ghahramani, Z.2
-
45
-
-
84860609370
-
Variational learning of inducing variables in sparse Gaussian processes
-
D. van Dyk and M. Welling, editors, of JMLR: Workshop and Conference Proceedings Series
-
M. Titsias. Variational learning of inducing variables in sparse Gaussian processes. In D. van Dyk and M. Welling, editors, Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics, volume 5 of JMLR: Workshop and Conference Proceedings Series, pages 567-574, 2009a.
-
(2009)
Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics
, vol.5
, pp. 567-574
-
-
Titsias, M.1
-
48
-
-
0032525527
-
Constructing and fitting models for cokriging and multivariable spatial prediction
-
PII S0378375897001626
-
J. M. Ver Hoef and R. P. Barry. Constructing and fitting models for cokriging and multivariable spatial prediction. Journal of Statistical Planning and Inference, 69(2):275-294, 1998. (Pubitemid 128182034)
-
(1998)
Journal of Statistical Planning and Inference
, vol.69
, Issue.2
, pp. 275-294
-
-
Ver Hoef, J.M.1
Barry, R.P.2
-
51
-
-
84899010839
-
Using the Nystr ̈om method to speed up kernel machines
-
T. K. Leen, T. G. Diettrich, and V. Tresp, editors, Cambridge, MA,MIT Press
-
C. K. I. Williams and M. Seeger. Using the Nystr ̈om method to speed up kernel machines. In T. K. Leen, T. G. Diettrich, and V. Tresp, editors, Advances in Neural Information Processing Systems, volume 13, pages 682-688, Cambridge, MA, 2001. MIT Press.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 682-688
-
-
Williams, C.K.I.1
Seeger, M.2
|