메뉴 건너뛰기




Volumn 119, Issue , 2013, Pages 1-11

Linear and nonlinear model updating of reinforced concrete T-beam bridges using artificial neural networks

Author keywords

Artificial neural networks; FE model updating and calibration; Linear and nonlinear structural analyses; RC T beam bridges; Structural identification

Indexed keywords

BRIDGE RESPONSE; DATA SETS; FE MODEL; FE MODEL UPDATING; FIELD EXPERIMENT; FINITE ELEMENT MODELS; KEY PARAMETERS; LABORATORY TEST; MODEL UPDATING; NON-LINEAR MODEL; NON-LINEAR RESPONSE; NONLINEAR MATERIAL PROPERTIES; NONLINEAR STRUCTURAL ANALYSIS; PARAMETER PREDICTION; PENNSYLVANIA; RESEARCH FIELDS; SIMULATED RESPONSE; STATIC RESPONSE; STRUCTURAL IDENTIFICATION; STRUCTURAL SYSTEMS;

EID: 84873401433     PISSN: 00457949     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compstruc.2012.12.017     Document Type: Article
Times cited : (78)

References (46)
  • 1
    • 84873379436 scopus 로고    scopus 로고
    • A benchmark study of dynamic damage identification of plates
    • D. Currie, N. Petrie, L. Mao, and Y. Lu A benchmark study of dynamic damage identification of plates Proc. ICE Eng Comput Mech 165 2012 103 118
    • (2012) Proc. ICE Eng Comput Mech , vol.165 , pp. 103-118
    • Currie, D.1    Petrie, N.2    Mao, L.3    Lu, Y.4
  • 2
    • 0018030821 scopus 로고
    • Optimization procedure to correct stiffness and flexibility matrices using vibration tests
    • M. Baruch Optimization procedure to correct stiffness and flexibility matrices using vibration data Am Inst Aeronaut Astronaut J 16 1978 1208 1210 (Pubitemid 9410925)
    • (1978) AIAA J , vol.16 , Issue.11 , pp. 1208-1210
    • Baruch Menahem1
  • 3
    • 38249001681 scopus 로고
    • Selective sensitivity in the frequency domain. Part I: Theory
    • Y. Ben-Haim, and U. Prells Selective sensitivity in the frequency domain. Part I: Theory Mech Syst Signal Process 7 1993 461 475
    • (1993) Mech Syst Signal Process , vol.7 , pp. 461-475
    • Ben-Haim, Y.1    Prells, U.2
  • 7
    • 77955427196 scopus 로고    scopus 로고
    • Interactive visualisation: A support for system identification
    • Y. Rafiq, and C. Sui Interactive visualisation: a support for system identification Adv Eng Inform 24 2010 355 366
    • (2010) Adv Eng Inform , vol.24 , pp. 355-366
    • Rafiq, Y.1    Sui, C.2
  • 9
    • 0035388101 scopus 로고    scopus 로고
    • Neural network design for engineering applications
    • DOI 10.1016/S0045-7949(01)00039-6, PII S0045794901000396
    • M.Y. Rafiq, G. Bugmann, and D.J. Easterbrook Neural network design for engineering applications Comput Struct 79 2001 1541 1552 (Pubitemid 32833069)
    • (2001) Computers and Structures , vol.79 , Issue.17 , pp. 1541-1552
    • Rafiq, M.Y.1    Bugmann, G.2    Easterbrook, D.J.3
  • 10
    • 70249122802 scopus 로고    scopus 로고
    • Applications of artificial intelligence and data mining techniques in soil modelling
    • A.A. Javadi, and M. Rezania Applications of artificial intelligence and data mining techniques in soil modelling Geomech Eng Int J 1 2009 53 74
    • (2009) Geomech Eng Int J , vol.1 , pp. 53-74
    • Javadi, A.A.1    Rezania, M.2
  • 11
    • 0029392099 scopus 로고
    • Vibration signature analysis using artificial neural networks
    • S.V. Barai, and P.C. Pandey Vibration signature analysis using artificial neural networks J Comput Civil Eng 9 1995 259 265
    • (1995) J Comput Civil Eng , vol.9 , pp. 259-265
    • Barai, S.V.1    Pandey, P.C.2
  • 13
    • 0033896379 scopus 로고    scopus 로고
    • Adaptive neural networks for model updating of structures
    • DOI 10.1088/0964-1726/9/1/306
    • C.C. Chang, T.Y.P. Chang, and Y.G. Xu Adaptive neural networks for model updating of structures Smart Mater Struct 9 2000 59 68 (Pubitemid 30555879)
    • (2000) Smart Materials and Structures , vol.9 , Issue.1 , pp. 59-68
    • Chang, C.C.1    Chang, T.Y.P.2    Xu, Y.G.3
  • 14
    • 0037474521 scopus 로고    scopus 로고
    • Selection of training samples for model updating using neural networks
    • C.C. Chang, T.Y.P. Chang, Y.G. Xu, and W.M. To Selection of training samples for model updating using neural networks J Sound Vib 249 2002 867 883
    • (2002) J Sound Vib , vol.249 , pp. 867-883
    • Chang, C.C.1    Chang, T.Y.P.2    Xu, Y.G.3    To, W.M.4
  • 15
    • 23144446338 scopus 로고    scopus 로고
    • Structural damage detection using neural network with learning rate improvement
    • DOI 10.1016/j.compstruc.2005.02.029, PII S004579490500177X
    • X. Fang, H. Luo, and J. Tang Structural damage detection using neural network with learning rate improvement Comput Struct 83 2005 2150 2161 (Pubitemid 41084681)
    • (2005) Computers and Structures , vol.83 , Issue.25-26 , pp. 2150-2161
    • Fang, X.1    Luo, H.2    Tang, J.3
  • 16
    • 23444453512 scopus 로고    scopus 로고
    • Study on finite element model updating of nonlinear structures using neural network
    • Q.G. Fei, A.Q. Li, and L.M. Zhang Study on finite element model updating of nonlinear structures using neural network J Astronaut 26 2005 267 269
    • (2005) J Astronaut , vol.26 , pp. 267-269
    • Fei, Q.G.1    Li, A.Q.2    Zhang, L.M.3
  • 17
    • 35448951634 scopus 로고    scopus 로고
    • Damage detection using artificial neural network with consideration of uncertainties
    • DOI 10.1016/j.engstruct.2007.01.013, PII S0141029607000417
    • N. Bakhary, H. Hao, and A.J. Deeks Damage detection using artificial neural network with consideration of uncertainties Eng Struct 29 2007 2806 2815 (Pubitemid 47629839)
    • (2007) Engineering Structures , vol.29 , Issue.11 , pp. 2806-2815
    • Bakhary, N.1    Hao, H.2    Deeks, A.J.3
  • 18
    • 37049008031 scopus 로고    scopus 로고
    • Damage identification for beams using ANN based on statistical property of structural responses
    • DOI 10.1016/j.compstruc.2007.05.034, PII S0045794907002143
    • Z.-X. Li, and X.-M. Yang Damage identification for beams using ANN based on statistical property of structural responses Comput Struct 86 2008 64 71 (Pubitemid 350251551)
    • (2008) Computers and Structures , vol.86 , Issue.1-2 , pp. 64-71
    • Li, Z.-X.1    Yang, X.-M.2
  • 20
    • 44949170675 scopus 로고    scopus 로고
    • Damage detection of truss bridge joints using artificial neural networks
    • M. Mehrjoo, N. Khaji, H. Moharrami, and A. Bahreininejad Damage detection of truss bridge joints using artificial neural networks Expert Syst Appl 35 2008 1122 1131
    • (2008) Expert Syst Appl , vol.35 , pp. 1122-1131
    • Mehrjoo, M.1    Khaji, N.2    Moharrami, H.3    Bahreininejad, A.4
  • 21
    • 77950598707 scopus 로고    scopus 로고
    • Structure damage detection using neural network with multi-stage substructuring
    • N. Bakhary, H. Hao, and A.J. Deeks Structure damage detection using neural network with multi-stage substructuring Adv Struct Eng 13 2010 95 110
    • (2010) Adv Struct Eng , vol.13 , pp. 95-110
    • Bakhary, N.1    Hao, H.2    Deeks, A.J.3
  • 22
    • 84861492550 scopus 로고    scopus 로고
    • Application of neural networks for structure updating
    • B. Miller Application of neural networks for structure updating Comput Assist Mech Eng Sci 18 2011 191 203
    • (2011) Comput Assist Mech Eng Sci , vol.18 , pp. 191-203
    • Miller, B.1
  • 23
    • 81255168540 scopus 로고    scopus 로고
    • Model updating of a steel truss based on artificial neural networks
    • S. Zhang, S. Chen, H. Wang, and W. Wang Model updating of a steel truss based on artificial neural networks Appl Mech Mater 121-126 2012 1363 1366
    • (2012) Appl Mech Mater , vol.121-126 , pp. 1363-1366
    • Zhang, S.1    Chen, S.2    Wang, H.3    Wang, W.4
  • 24
    • 0037320675 scopus 로고    scopus 로고
    • A neural network approach for structural identification and diagnosis of a building from seismic response data
    • DOI 10.1002/eqe.219
    • C.S. Huang, S.L. Hung, and C.M. Wen A neural network approach for structural identification and diagnosis of a building from seismic response data Earthquake Eng Struct Dyn 32 2003 187 206 (Pubitemid 36189506)
    • (2003) Earthquake Engineering and Structural Dynamics , vol.32 , Issue.2 , pp. 187-206
    • Huang, C.S.1    Hung, S.L.2    Wen, C.M.3    Tu, T.T.4
  • 25
    • 9944252845 scopus 로고    scopus 로고
    • Direct identification of structural parameters from dynamic responses with neural networks
    • B. Xu, Z.S. Wu, and G.D. Chen Direct identification of structural parameters from dynamic responses with neural networks Eng Appl Artif Intell 17 2004 931 943
    • (2004) Eng Appl Artif Intell , vol.17 , pp. 931-943
    • Xu, B.1    Wu, Z.S.2    Chen, G.D.3
  • 26
    • 77951647962 scopus 로고    scopus 로고
    • A hybrid neural network strategy for identification of structural parameters
    • P. Pillai, and S. Krishnapillai A hybrid neural network strategy for identification of structural parameters Struct Infrastruct Eng 6 2010 379 391
    • (2010) Struct Infrastruct Eng , vol.6 , pp. 379-391
    • Pillai, P.1    Krishnapillai, S.2
  • 27
    • 79751513907 scopus 로고    scopus 로고
    • Identification of structural damage in a vehicular bridge using artificial neural networks
    • C. Gonzalez-Perez, and J. Valdes-Gonzalez Identification of structural damage in a vehicular bridge using artificial neural networks Struct Health Monit 10 2011 33 48
    • (2011) Struct Health Monit , vol.10 , pp. 33-48
    • Gonzalez-Perez, C.1    Valdes-Gonzalez, J.2
  • 28
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • DOI 10.1016/S1364-8152(99)00007-9, PII S1364815299000079
    • H.R. Maier, and G.C. Dandy Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications Environ Model Softw 15 2000 101 124 (Pubitemid 30018318)
    • (2000) Environmental Modelling and Software , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 30
    • 65249140402 scopus 로고    scopus 로고
    • Novel approach for promoting the generalization ability of neural networks
    • N. Feng, F. Wang, and Y. Qiu Novel approach for promoting the generalization ability of neural networks Int J Inform Commun Eng 2 2006 131 135
    • (2006) Int J Inform Commun Eng , vol.2 , pp. 131-135
    • Feng, N.1    Wang, F.2    Qiu, Y.3
  • 31
    • 8144224158 scopus 로고    scopus 로고
    • Modeling confinement efficiency of reinforced concrete columns with rectilinear transverse steel using artificial neural networks
    • DOI 10.1061/(ASCE)0733-9445(2003)129:6(775)
    • C.W. Tang, J.C. Chen, and T. Yen Modeling confinement efficiency of reinforced concrete columns with rectilinear transverse steel using artificial neural networks J Struct Eng 129 2003 775 783 (Pubitemid 40001032)
    • (2003) Journal of Structural Engineering , vol.129 , Issue.6 , pp. 775-783
    • Tang, C.-W.1    Chen, H.-J.2    Yen, T.3
  • 32
    • 0033737832 scopus 로고    scopus 로고
    • Substructural identification using neural networks
    • C.B. Yun, and E.Y. Bahng Substructural identification using neural networks Comput Struct 77 2000 41 52
    • (2000) Comput Struct , vol.77 , pp. 41-52
    • Yun, C.B.1    Bahng, E.Y.2
  • 33
    • 69949178632 scopus 로고    scopus 로고
    • Project report submitted to Pennsylvania Department of Transportation Bureau of Design, Bridge Quality Assurance Division by Drexel Intelligent Infrastructure and Transportation Safety Institute, Drexel University
    • Catbas N, Hasançebi O, Ciloglu SK, Aktan AE. Requalification of aged reinforced concrete T-beam bridges in Pennsylvania. Project report submitted to Pennsylvania Department of Transportation Bureau of Design, Bridge Quality Assurance Division by Drexel Intelligent Infrastructure and Transportation Safety Institute, Drexel University; 2003.
    • (2003) Requalification of Aged Reinforced Concrete T-beam Bridges in Pennsylvania
    • Catbas N, H.1
  • 35
    • 84873339013 scopus 로고    scopus 로고
    • SAP2000, Release 14 Computers and Structures, Inc., Berkeley, CA
    • SAP2000, Release 14. Sap2000 Analysis Reference Manual. Computers and Structures, Inc., Berkeley, CA; 2010.
    • (2010) Sap2000 Analysis Reference Manual
  • 36
    • 84873391356 scopus 로고    scopus 로고
    • ANSYS CivilFEM, Release 12
    • ANSYS CivilFEM, Release 12. ANSYS CivilFEM training manual; 2009. http://www.civilfem.com.
    • (2009) ANSYS CivilFEM Training Manual
  • 38
    • 0001688499 scopus 로고
    • Equation for the stress-strain curve of concrete
    • P. Desai, and S. Krishnan Equation for the stress-strain curve of concrete ACI Struct J 61 1964 345 350
    • (1964) ACI Struct J , vol.61 , pp. 345-350
    • Desai, P.1    Krishnan, S.2
  • 42
    • 0037370619 scopus 로고    scopus 로고
    • Neural networks applications in concrete structures
    • M.N.S. Hadi Neural networks applications in concrete structures Comput Struct 81 2003 373 381
    • (2003) Comput Struct , vol.81 , pp. 373-381
    • Hadi, M.N.S.1
  • 43
    • 0000169232 scopus 로고
    • An algorithm for least squares estimation of non-linear parameters
    • D. Marquardt An algorithm for least squares estimation of non-linear parameters J Soc Ind Appl Math 11 1963 431 441
    • (1963) J Soc Ind Appl Math , vol.11 , pp. 431-441
    • Marquardt, D.1
  • 44
    • 67651203327 scopus 로고    scopus 로고
    • Predicting re-aeration rates using artificial neural networks in surface aerators
    • A.R. Rao, and B. Kumar Predicting re-aeration rates using artificial neural networks in surface aerators Int J Appl Environ Sci 2 2007 155 166
    • (2007) Int J Appl Environ Sci , vol.2 , pp. 155-166
    • Rao, A.R.1    Kumar, B.2
  • 45
    • 0032027048 scopus 로고    scopus 로고
    • Structural engineering applications with augmented neural networks
    • I.C. Yeh Structural engineering applications with augmented neural networks Comput Aided Civil Infrastruct Eng 13 1998 83 90
    • (1998) Comput Aided Civil Infrastruct Eng , vol.13 , pp. 83-90
    • Yeh, I.C.1
  • 46
    • 84872281824 scopus 로고    scopus 로고
    • Methodology of neural network based modeling of machining processes
    • M. Radovanovic, and M. Madic Methodology of neural network based modeling of machining processes Int J Mod Manuf Technol 2 2010 77 82
    • (2010) Int J Mod Manuf Technol , vol.2 , pp. 77-82
    • Radovanovic, M.1    Madic, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.