메뉴 건너뛰기




Volumn 1, Issue 1, 2009, Pages 53-74

Applications of artificial intelligence and data mining techniques in soil modeling

Author keywords

Artificial intelligence; Data mining; Evolutionary computation; Genetic programming; Geotechnical engineering; Neural network; Soil modeling

Indexed keywords

ARTIFICIAL INTELLIGENCE; DATA MINING; EVOLUTIONARY ALGORITHMS; GENETIC ALGORITHMS; GENETIC PROGRAMMING; GEOTECHNICAL ENGINEERING; NEURAL NETWORKS; PATTERN RECOGNITION SYSTEMS; SOILS;

EID: 70249122802     PISSN: 2005307X     EISSN: 20926219     Source Type: Journal    
DOI: 10.12989/gae.2009.1.1.053     Document Type: Article
Times cited : (102)

References (83)
  • 1
    • 0032430468 scopus 로고    scopus 로고
    • General regression neural networks for driven piles in cohesionless soils
    • Abu-Kiefa, M.A. (1998), “General regression neural networks for driven piles in cohesionless soils”, J. Geotech. Geoenviron. Eng., ASCE, 124(12), 1177-1185.
    • (1998) J. Geotech. Geoenviron. Eng., ASCE , vol.124 , Issue.12 , pp. 1177-1185
    • Abu-Kiefa, M.A.1
  • 2
    • 84862124998 scopus 로고    scopus 로고
    • “On the Use of Artificial Neural Networks as Generic Descriptors of Geomaterial Mechanical Behavior”, Proceeding of the International Symposium on Prediction and Performance in Rock Mechanics and Rock Engineering, EUROCK '96, Torino
    • Amorosi, A., Millar, D.L. and Rampello, S. (1996), “On the Use of Artificial Neural Networks as Generic Descriptors of Geomaterial Mechanical Behavior”, Proceeding of the International Symposium on Prediction and Performance in Rock Mechanics and Rock Engineering, EUROCK '96, Torino, Italy, 161-168.
    • (1996) Italy , vol.161-168
    • Amorosi, A.1    Millar, D.L.2    Rampello, S.3
  • 3
    • 23644459214 scopus 로고    scopus 로고
    • Artificial neural network for stress-strain behavior of sandy soils: Knowledge based verification
    • Banimahd, M., Yasrobi, S.S. and Woodward, P.K. (2005), “Artificial neural network for stress-strain behavior of sandy soils: Knowledge based verification”, Comput. Geotech., 32(5), 377-386.
    • (2005) Comput. Geotech. , vol.32 , Issue.5 , pp. 377-386
    • Banimahd, M.1    Yasrobi, S.S.2    Woodward, P.K.3
  • 5
    • 0001922283 scopus 로고
    • Neural network training tips and techniques
    • Caudill, M. (1991), “Neural network training tips and techniques”, AI Expert, 6(1), 56-61.
    • (1991) AI Expert , vol.6 , Issue.1 , pp. 56-61
    • Caudill, M.1
  • 8
    • 0022928656 scopus 로고
    • A Hierarchical Approach for Constitutive Modeling of Geologic Materials
    • Desai, C.S., Somasundaram, S. and Frantziskonis, G. (1986), “A Hierarchical Approach for Constitutive Modeling of Geologic Materials”, Int. J. Numer. Anal. Met. Geomech., 10(3), 225-257.
    • (1986) Int. J. Numer. Anal. Met. Geomech. , vol.10 , Issue.3 , pp. 225-257
    • Desai, C.S.1    Somasundaram, S.2    Frantziskonis, G.3
  • 10
    • 38849209134 scopus 로고    scopus 로고
    • An investigation on stream temperature analysis based on evolutionary computing
    • Doglioni, A., Giustolisi, O., Savic, D.A. and Webb, B.W. (2008), “An investigation on stream temperature analysis based on evolutionary computing”, Hydrol. Process, 22(3) 315-326.
    • (2008) Hydrol. Process , vol.22 , Issue.3 , pp. 315-326
    • Doglioni, A.1    Giustolisi, O.2    Savic, D.A.3    Webb, B.W.4
  • 12
    • 0000412014 scopus 로고
    • Non-linear analysis of stress and strain in soils
    • Duncan, J.M. and Chang, C.Y. (1970), “Non-linear analysis of stress and strain in soils”, J. Soil Mech. Found. Division, ASCE, 96(SM5), 1629-1653.
    • (1970) J. Soil Mech. Found. Division, ASCE , vol.96 , Issue.SM5 , pp. 1629-1653
    • Duncan, J.M.1    Chang, C.Y.2
  • 15
    • 0029309340 scopus 로고
    • Stress-Strain Modeling of Sands using Artificial Neural Netwoks
    • Ellis, G.W., Yao, C., Zhao, R. and Penumadu, D. (1995), “Stress-Strain Modeling of Sands using Artificial Neural Netwoks”, J. Geotech. Eng. Division, ASCE, 121(5), 429-435.
    • (1995) J. Geotech. Eng. Division, ASCE , vol.121 , Issue.5 , pp. 429-435
    • Ellis, G.W.1    Yao, C.2    Zhao, R.3    Penumadu, D.4
  • 16
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman, J.L. (1990), “Finding structure in time”, Cognitive Science, 14, 179–211.
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 17
    • 0028413247 scopus 로고
    • Neural networks in civil engineering II principles and understanding
    • Flood, I. and Kartam, N. (1994). “Neural networks in civil engineering II principles and understanding”, J. Comput. Civil. Eng., ASCE, 8(2), 149-162.
    • (1994) J. Comput. Civil. Eng., ASCE , vol.8 , Issue.2 , pp. 149-162
    • Flood, I.1    Kartam, N.2
  • 18
    • 84929989295 scopus 로고
    • Where and why artificial neural networks are applicable in civil engineering
    • Garrett, J.H. (1994). “Where and why artificial neural networks are applicable in civil engineering”, J. Comput. Civil. Eng., ASCE, 8(2), 129-130.
    • (1994) J. Comput. Civil. Eng., ASCE , vol.8 , Issue.2 , pp. 129-130
    • Garrett, J.H.1
  • 19
    • 84985400024 scopus 로고
    • Flow of compressible fluid in porous elastic media
    • Ghaboussi, J. and Wilson, E.L. (1973), “Flow of compressible fluid in porous elastic media”, Int. J. Numer. Met. Eng., 5, 419-442.
    • (1973) Int. J. Numer. Met. Eng. , vol.5 , pp. 419-442
    • Ghaboussi, J.1    Wilson, E.L.2
  • 21
    • 0025782169 scopus 로고
    • Knowledge-based modeling of material behavior with neural networks
    • Ghaboussi, J., Carret, J. and Wu, X. (1991), “Knowledge-based modeling of material behavior with neural networks”, J. Eng. Mech. Division, 117(1), 132-153.
    • (1991) J. Eng. Mech. Division , vol.117 , Issue.1 , pp. 132-153
    • Ghaboussi, J.1    Carret, J.2    Wu, X.3
  • 23
    • 0032069843 scopus 로고    scopus 로고
    • Autoprogressive training of neural network constitutive models
    • Ghaboussi, J., Pecknold, D.A., Zhang, M. and Haj-Ali, R.M. (1998), “Autoprogressive training of neural network constitutive models”, Int. J. Numer. Met. Eng., 42(1), 105-126.
    • (1998) Int. J. Numer. Met. Eng. , vol.42 , Issue.1 , pp. 105-126
    • Ghaboussi, J.1    Pecknold, D.A.2    Zhang, M.3    Haj-Ali, R.M.4
  • 24
    • 0031917757 scopus 로고    scopus 로고
    • New nested adaptive neural networks (NANN) for constitutive modeling
    • Ghaboussi, J. and Sidarta, D.E. (1998), “New nested adaptive neural networks (NANN) for constitutive modeling”, Comput. and Geotech., 22(1), 29-52.
    • (1998) Comput. and Geotech. , vol.22 , Issue.1 , pp. 29-52
    • Ghaboussi, J.1    Sidarta, D.E.2
  • 26
    • 33744791952 scopus 로고    scopus 로고
    • A symbolic data-driven technique based on evolutionary polynomial regression
    • Giustolisi, O. and Savic, D.A. (2006), “A symbolic data-driven technique based on evolutionary polynomial regression”, J. Hydroinform., 8(3), 207-222.
    • (2006) J. Hydroinform. , vol.8 , Issue.3 , pp. 207-222
    • Giustolisi, O.1    Savic, D.A.2
  • 27
    • 33845689247 scopus 로고    scopus 로고
    • A multi-model approach to analysis of environmental phenomena
    • Giustolisi, O., Doglioni, A., Savic, D.A. and Webb, B.W. (2007), “A multi-model approach to analysis of environmental phenomena”, Environ. Model. Softw., 22(5), 674-682.
    • (2007) Environ. Model. Softw. , vol.22 , Issue.5 , pp. 674-682
    • Giustolisi, O.1    Doglioni, A.2    Savic, D.A.3    Webb, B.W.4
  • 28
    • 33745024580 scopus 로고    scopus 로고
    • Optimal design of artificial neural networks by a multi-objective strategy: Groundwater level predictions
    • Giustolisi, O. and Simeone, V. (2006), Optimal design of artificial neural networks by a multi-objective strategy: groundwater level predictions. Hydrol. Sci. J., 51(3), 502-523.
    • (2006) Hydrol. Sci. J. , vol.51 , Issue.3 , pp. 502-523
    • Giustolisi, O.1    Simeone, V.2
  • 29
    • 0030414004 scopus 로고    scopus 로고
    • Pile driving records reanalyzed using neural networks
    • Goh, A.T.C. (1996), “Pile driving records reanalyzed using neural networks”, J. Geotech. Geoenviron. Eng., ASCE, 122(6), 492-495.
    • (1996) J. Geotech. Geoenviron. Eng., ASCE , vol.122 , Issue.6 , pp. 492-495
    • Goh, A.T.C.1
  • 30
    • 0042324284 scopus 로고    scopus 로고
    • A neural network framework for mechanical behavior of unsaturated soils
    • Habibagahi, G. and Bamdad, A. (2003), “A neural network framework for mechanical behavior of unsaturated soils”, Can. Geotech. J., 40(3), 684-693.
    • (2003) Can. Geotech. J. , vol.40 , Issue.3 , pp. 684-693
    • Habibagahi, G.1    Bamdad, A.2
  • 31
    • 0035396126 scopus 로고    scopus 로고
    • Simulated micromechanical models using artificial neural networks
    • Haj-Ali, R.M., Pecknold, D.A., Ghaboussi, J. and Voyiadjis, G.Z. (2001), “Simulated micromechanical models using artificial neural networks”, J. Eng. Mech., 127(7), 730-738.
    • (2001) J. Eng. Mech. , vol.127 , Issue.7 , pp. 730-738
    • Haj-Ali, R.M.1    Pecknold, D.A.2    Ghaboussi, J.3    Voyiadjis, G.Z.4
  • 32
    • 1442338336 scopus 로고    scopus 로고
    • Numerical implementation of a neural network based material model in finite element analysis
    • Hashash, Y.M.A., Jung, S. and Ghaboussi, J. (2004), “Numerical implementation of a neural network based material model in finite element analysis”, Int. J. Numer. Met. Eng., 59, 989-1005.
    • (2004) Int. J. Numer. Met. Eng. , vol.59 , pp. 989-1005
    • Hashash, Y.M.A.1    Jung, S.2    Ghaboussi, J.3
  • 33
    • 29144532474 scopus 로고    scopus 로고
    • Prediction of air losses in compressed air tunneling using neural network
    • Javadi, A.A. (2006), “Prediction of air losses in compressed air tunneling using neural network”, J. Tunneling Underground Space Technology, 21, 9-20.
    • (2006) J. Tunneling Underground Space Technology , vol.21 , pp. 9-20
    • Javadi, A.A.1
  • 34
    • 85055434928 scopus 로고    scopus 로고
    • A new genetic programming-based evolutionary approach for constitutive modeling of soils
    • Los Angeles, California, USA
    • Javadi, A.A. and Rezania, M. (2006), “A new genetic programming-based evolutionary approach for constitutive modeling of soils”. Proceeding of the 7th World Congress on Computational Mechanics, Los Angeles, California, USA.
    • (2006) Proceeding of the 7Th World Congress on Computational Mechanics
    • Javadi, A.A.1    Rezania, M.2
  • 35
    • 85055443991 scopus 로고    scopus 로고
    • A new approach to data-driven modeling in geotechnical engineering
    • Under Review
    • Javadi, A.A. and Rezania, M. (2008a), “A new approach to data-driven modeling in geotechnical engineering”, Int. J. Geomech. Geoeng., (Under Review).
    • (2008) Int. J. Geomech. Geoeng.
    • Javadi, A.A.1    Rezania, M.2
  • 36
    • 85055457540 scopus 로고    scopus 로고
    • A New Approach to Constitutive Modeling of Soils in Finite Element Analysis using Evolutionary Computation
    • 2-4 July, Plymouth, UK
    • Javadi, A.A. and Rezania, M. (2008b), A New Approach to Constitutive Modeling of Soils in Finite Element Analysis using Evolutionary Computation. Proceedings of the Intelligent Computing in Engineering-ICE08 Conference, 2-4 July, Plymouth, UK.
    • (2008) Proceedings of the Intelligent Computing in Engineering-Ice08 Conference
    • Javadi, A.A.1    Rezania, M.2
  • 38
    • 33747786653 scopus 로고    scopus 로고
    • Evaluation of liquefaction induced lateral displacements using genetic programming
    • Javadi, A. A., Rezania, M. and Nezhad, M.M. (2006), “Evaluation of liquefaction induced lateral displacements using genetic programming”, Comput. Geotech., 33(4-5), 222-233.
    • (2006) Comput. Geotech. , vol.33 , Issue.4-5 , pp. 222-233
    • Javadi, A.A.1    Rezania, M.2    Nezhad, M.M.3
  • 42
    • 0842288762 scopus 로고    scopus 로고
    • Neural network for constitutive modeling in finite element analysis
    • Javadi, A.A., Tan, T.P. and Zhang, M. (2003), “Neural network for constitutive modeling in finite element analysis”, Comput. Assist. Mech. Eng. Sci., 10, 375-381.
    • (2003) Comput. Assist. Mech. Eng. Sci. , vol.10 , pp. 375-381
    • Javadi, A.A.1    Tan, T.P.2    Zhang, M.3
  • 44
    • 0033131832 scopus 로고    scopus 로고
    • CPT-based liquefaction evaluation using artificial neural networks
    • Juang, C.H. and Chen, C.J. (1999), “CPT-based liquefaction evaluation using artificial neural networks”, Comput. Aid. Civil Infrastruct. Eng., 14(3), 221-229.
    • (1999) Comput. Aid. Civil Infrastruct. Eng. , vol.14 , Issue.3 , pp. 221-229
    • Juang, C.H.1    Chen, C.J.2
  • 45
    • 0035521718 scopus 로고    scopus 로고
    • Three-dimensional site characterization: Neural network approach
    • Juang, C.H., Jiang, T. and Christopher, R.A. (2001), “Three-dimensional site characterization: neural network approach”, Geotechnique, 51(9), 799-809.
    • (2001) Geotechnique , vol.51 , Issue.9 , pp. 799-809
    • Juang, C.H.1    Jiang, T.2    Christopher, R.A.3
  • 46
    • 33646361038 scopus 로고    scopus 로고
    • Neural network constitutive model for rate-dependent materials
    • Jung, S. and Ghaboussi, J. (2006), “Neural network constitutive model for rate-dependent materials”, Comput. Struct., 84(15-16), 955-963.
    • (2006) Comput. Struct. , vol.84 , Issue.15-16 , pp. 955-963
    • Jung, S.1    Ghaboussi, J.2
  • 47
    • 0035482783 scopus 로고    scopus 로고
    • Sensitivity analysis of neural networks in spool fabrication productivity studies
    • Lu, M., AbouRizk, S.M. and Hermann, U.H. (2001), “Sensitivity analysis of neural networks in spool fabrication productivity studies”, J. Comput. Civil Eng., ASCE, 15(4), 299-308.
    • (2001) J. Comput. Civil Eng., ASCE , vol.15 , Issue.4 , pp. 299-308
    • Lu, M.1    Abourizk, S.M.2    Hermann, U.H.3
  • 48
    • 0742322765 scopus 로고    scopus 로고
    • Artificial neural networks and grey systems for the prediction of slope stability
    • Lu, P. and Rosenbaum, M.S. (2003), “Artificial neural networks and grey systems for the prediction of slope stability”, Nat. Hazards, 30(3), 383-395.
    • (2003) Nat. Hazards , vol.30 , Issue.3 , pp. 383-395
    • Lu, P.1    Rosenbaum, M.S.2
  • 49
    • 0023859409 scopus 로고
    • Deformation and fracturing behavior of discontinuous rock mass and damage mechanics theory
    • Kawamoto, T., Ichkawa, Y. and Kyoya, T. (1988), “Deformation and fracturing behavior of discontinuous rock mass and damage mechanics theory”, Int. J. Numer. Anal. Met. Geomech., 12(1), 1-30.
    • (1988) Int. J. Numer. Anal. Met. Geomech. , vol.12 , Issue.1 , pp. 1-30
    • Kawamoto, T.1    Ichkawa, Y.2    Kyoya, T.3
  • 51
    • 0016568353 scopus 로고
    • Elastoplastic stress-strain theory for cohesionless soil
    • Lade, P.V. and Duncan, J.M. (1975), “Elastoplastic stress-strain theory for cohesionless soil”, J. Geotech. Eng. Division, ASCE, 101(GT10), 1037-1053.
    • (1975) J. Geotech. Eng. Division, ASCE , vol.101 , Issue.GT10 , pp. 1037-1053
    • Lade, P.V.1    Duncan, J.M.2
  • 52
    • 0041624274 scopus 로고    scopus 로고
    • Artificial neural network as an incremental non-linear constitutive model for finite element code
    • Lefik, M. and Schrefler, B.A. (2003), “Artificial neural network as an incremental non-linear constitutive model for finite element code”, Comput. Method. Appl. Mech. Eng., 192, 3265-3283.
    • (2003) Comput. Method. Appl. Mech. Eng. , vol.192 , pp. 3265-3283
    • Lefik, M.1    Schrefler, B.A.2
  • 53
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • Lippmann, R.P. (1987), “An introduction to computing with neural nets”, IEEE Acoust. Speech Signal Process Mag., 4(2), 4-22.
    • (1987) IEEE Acoust. Speech Signal Process Mag. , vol.4 , Issue.2 , pp. 4-22
    • Lippmann, R.P.1
  • 55
    • 85021761250 scopus 로고
    • On the investigation of multilayer feedforward neural network model of rock deformability behavior
    • Tokyo, Japan
    • Millar, D.L. and Calderbank, P.A. (1995), “On the investigation of multilayer feedforward neural network model of rock deformability behavior”, Proceeding of The 8th International Congress on Rock Mechanics, Tokyo, Japan, 933-938.
    • (1995) Proceeding of the 8Th International Congress on Rock Mechanics , pp. 933-938
    • Millar, D.L.1    Calderbank, P.A.2
  • 56
    • 0028733796 scopus 로고
    • Investigation of back-propagation artificial neural networks in modeling the stress-strain behavior of sandstone rock
    • Piscataway, NJ
    • Millar, D.L. and Clarici, E. (1994), “Investigation of back-propagation artificial neural networks in modeling the stress-strain behavior of sandstone rock”, Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ, 3326-3331.
    • (1994) Proceedings of IEEE International Conference on Neural Networks , pp. 3326-3331
    • Millar, D.L.1    Clarici, E.2
  • 57
    • 0342318685 scopus 로고    scopus 로고
    • Discussion of stress-strain modeling of sands using artificial neural networks
    • Najjar, Y.M. and Basheer, I.A. (1996), “Discussion of stress-strain modeling of sands using artificial neural networks”, J. Geotech. Eng. Division, ASCE, 122(11), 949-950.
    • (1996) J. Geotech. Eng. Division, ASCE , vol.122 , Issue.11 , pp. 949-950
    • Najjar, Y.M.1    Basheer, I.A.2
  • 61
    • 0032786618 scopus 로고    scopus 로고
    • Triaxial compression behavior of sand and gravel using artificial neural networks
    • Penumadu, D. and Zhao, R. (1999), “Triaxial compression behavior of sand and gravel using artificial neural networks”, Comput. Geotech., 24(3), 207-230.
    • (1999) Comput. Geotech. , vol.24 , Issue.3 , pp. 207-230
    • Penumadu, D.1    Zhao, R.2
  • 62
    • 0034106649 scopus 로고    scopus 로고
    • Virtual geotechnical laboratory experiments using a simulator
    • Penumadu, D., Zhao, R. and Frost, D. (2000), “Virtual geotechnical laboratory experiments using a simulator”, Int. J. Numeri. Anal. Met. Geomech., 24(5), 439-451.
    • (2000) Int. J. Numeri. Anal. Met. Geomech. , vol.24 , Issue.5 , pp. 439-451
    • Penumadu, D.1    Zhao, R.2    Frost, D.3
  • 64
    • 0035035711 scopus 로고    scopus 로고
    • A neural network model for the uplift capacity of suction caissons
    • Rahman, M.S., Wang, J., Deng, W. and Carter, J.P. (2001), “A neural network model for the uplift capacity of suction caissons”, Comput. Geotech., 28(4), 269-287.
    • (2001) Comput. Geotech. , vol.28 , Issue.4 , pp. 269-287
    • Rahman, M.S.1    Wang, J.2    Deng, W.3    Carter, J.P.4
  • 66
    • 70649110356 scopus 로고    scopus 로고
    • A new genetic programming model for predicting settlement of shallow foundations
    • Rezania, M. and Javadi, A.A. (2007), “A new genetic programming model for predicting settlement of shallow foundations”, Can. Geotech. J., 44(12), 1462-1473.
    • (2007) Can. Geotech. J. , vol.44 , Issue.12 , pp. 1462-1473
    • Rezania, M.1    Javadi, A.A.2
  • 67
    • 85055425666 scopus 로고    scopus 로고
    • Predicting settlement of shallow foundations using evolutionary polynomial regression
    • Under Review
    • Rezania, M. and Javadi, A.A. (2008a), “Predicting settlement of shallow foundations using evolutionary polynomial regression”, Comput. Aid. Civil Infrastruct. Eng., (Under Review).
    • (2008) Comput. Aid. Civil Infrastruct. Eng.
    • Rezania, M.1    Javadi, A.A.2
  • 69
    • 49149128168 scopus 로고    scopus 로고
    • An evolutionary-based data mining technique for assessment of civil engineering systems
    • Rezania, M., Javadi, A.A. and Giustolisi, O. (2008a), “An evolutionary-based data mining technique for assessment of civil engineering systems”, J. Eng. Computat., 25(6), 500-517.
    • (2008) J. Eng. Computat. , vol.25 , Issue.6 , pp. 500-517
    • Rezania, M.1    Javadi, A.A.2    Giustolisi, O.3
  • 70
    • 85055439598 scopus 로고    scopus 로고
    • Evaluation of liquefaction potential based on CPT results using evolutionary polynomial regression
    • (Under Review)
    • Rezania, M., Javadi, A.A. and Giustolisi, O. (2008b), “Evaluation of liquefaction potential based on CPT results using evolutionary polynomial regression”, Comput. Geotech., (Under Review).
    • (2008) Comput. Geotech
    • Rezania, M.1    Javadi, A.A.2    Giustolisi, O.3
  • 72
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986), “Learning representations by back-propagating errors”, Nature, 323, 533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 75
    • 0033862527 scopus 로고    scopus 로고
    • On self-learning finite element code based on monitored response of structures
    • Shin, H.S. and Pande, G.N. (2000), “On self-learning finite element code based on monitored response of structures”, Comput. Geotech., 27, 161-178.
    • (2000) Comput. Geotech. , vol.27 , pp. 161-178
    • Shin, H.S.1    Pande, G.N.2
  • 78
    • 0031941646 scopus 로고    scopus 로고
    • Constitutive modeling of geomaterials from non-uniform material tests
    • Sidarta, D.E. and Ghaboussi, J. (1998), “Constitutive modeling of geomaterials from non-uniform material tests”, Comput. Geotech., 22(1), 53-71.
    • (1998) Comput. Geotech. , vol.22 , Issue.1 , pp. 53-71
    • Sidarta, D.E.1    Ghaboussi, J.2
  • 81
    • 0036897897 scopus 로고    scopus 로고
    • Revised multilinear regression equations for prediction of lateral spread displacement
    • Youd, T.L., Hansen, C.M. and Bartlett, S.F. (2002), “Revised multilinear regression equations for prediction of lateral spread displacement”, J. Geotech. Geoenviron. Eng., ASCE, 128(12), 1007-1017.
    • (2002) J. Geotech. Geoenviron. Eng., ASCE , vol.128 , Issue.12 , pp. 1007-1017
    • Youd, T.L.1    Hansen, C.M.2    Bartlett, S.F.3
  • 82
    • 0032194440 scopus 로고    scopus 로고
    • Modeling of soil behavior with a recurrent neural network
    • Zhu, J.-H., Zaman, M.M. and Anderson, S.A. (1998a), “Modeling of soil behavior with a recurrent neural network”, Can. Geotech. J., 35(5), 858-872.
    • (1998) Can. Geotech. J. , vol.35 , Issue.5 , pp. 858-872
    • Zhu, J.-H.1    Zaman, M.M.2    Anderson, S.A.3
  • 83
    • 3643140672 scopus 로고    scopus 로고
    • Modeling of shearing behavior of a residual soil with recurrent neural network
    • Zhu, J.-H., Zaman, M.M. and Anderson, S.A. (1998b), “Modeling of shearing behavior of a residual soil with recurrent neural network”, Int. J. Numer. Anal. Met. Geomech., 22(8), 671-687.
    • (1998) Int. J. Numer. Anal. Met. Geomech. , vol.22 , Issue.8 , pp. 671-687
    • Zhu, J.-H.1    Zaman, M.M.2    Anderson, S.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.