-
1
-
-
18744367558
-
Hierarchical document categorization with support vector machines
-
L. Cai and T. Hofmann. Hierarchical document categorization with support vector machines. In CIKM 13, pages 78-87, 2004.
-
(2004)
CIKM
, vol.13
, pp. 78-87
-
-
Cai, L.1
Hofmann, T.2
-
2
-
-
0010442827
-
On the algorithmic implementation of multiclass kernel-based vector machines
-
K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector machines. J. M. Learn. Res., 2:265-292, 2001.
-
(2001)
J. M. Learn. Res.
, vol.2
, pp. 265-292
-
-
Crammer, K.1
Singer, Y.2
-
3
-
-
34250263445
-
Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation
-
P. Craven and G. Wahba. Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation. Numerische Mathematik, 31:377-403, 1979.
-
(1979)
Numerische Mathematik
, vol.31
, pp. 377-403
-
-
Craven, P.1
Wahba, G.2
-
5
-
-
0036505670
-
A comparison of methods for multi-class support vector machines
-
C.-W. Hsu and C.-J. Lin. A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks, 13:415-425, 2002.
-
(2002)
IEEE Transactions on Neural Networks
, vol.13
, pp. 415-425
-
-
Hsu, C.-W.1
Lin, C.-J.2
-
6
-
-
14344253847
-
Predictive automatic relevance determination by expectation propagation
-
Y. Qi, T. Minka, R. Picard, and Z. Ghahramani. Predictive automatic relevance determination by expectation propagation. In Proceedings of ICML 21, 2004.
-
(2004)
Proceedings of ICML
, vol.21
-
-
Qi, Y.1
Minka, T.2
Picard, R.3
Ghahramani, Z.4
-
7
-
-
12444291490
-
Gaussian processes for machine learning
-
M. Seeger. Gaussian processes for machine learning. International Journal of Neural Systems, 14(2):69-106, 2004.
-
(2004)
International Journal of Neural Systems
, vol.14
, Issue.2
, pp. 69-106
-
-
Seeger, M.1
-
8
-
-
84864057639
-
Cross-validation optimization for structured Hessian kernel methods
-
Tübingen Germany
-
M. Seeger. Cross-validation optimization for structured Hessian kernel methods. Technical report, Max Planck Institute for Biologic Cybernetics, Tübingen, Germany, 2006. See www.kyb.tuebingen.mpg.de/bs/people/seeger.
-
(2006)
Technical Report Max Planck Institute for Biologic Cybernetics
-
-
Seeger, M.1
-
9
-
-
33750999683
-
Fast Gaussian process regression using KD-trees
-
Y. Shen, A. Ng, and M. Seeger. Fast Gaussian process regression using KD-trees. In Advances in NIPS 18, 2006.
-
(2006)
Advances in NIPS
, vol.18
-
-
Shen, Y.1
Ng, A.2
Seeger, M.3
-
10
-
-
84899000575
-
Sparse greedy Gaussian process regression
-
A. Smola and P. Bartlett. Sparse greedy Gaussian process regression. In Advances in NIPS 13, pages 619-625, 2001.
-
(2001)
Advances in NIPS
, vol.13
, pp. 619-625
-
-
Smola, A.1
Bartlett, P.2
-
11
-
-
0032289422
-
Bayesian classification with Gaussian processes
-
C. K. I. Williams and D. Barber. Bayesian classification with Gaussian processes. IEEE PAMI, 20(12):1342-1351, 1998.
-
(1998)
IEEE PAMI
, vol.20
, Issue.12
, pp. 1342-1351
-
-
Williams, C.K.I.1
Barber, D.2
-
12
-
-
84898938795
-
Efficient kernel machines using the improved fast Gauss transform
-
C. Yang, R. Duraiswami, and L. Davis. Efficient kernel machines using the improved fast Gauss transform. In Advances in NIPS 17, pages 1561-1568, 2005.
-
(2005)
Advances in NIPS
, vol.17
, pp. 1561-1568
-
-
Yang, C.1
Duraiswami, R.2
Davis, L.3
|