메뉴 건너뛰기




Volumn 60, Issue , 2013, Pages 75-81

A new methodology to predict backbreak in blasting operation

Author keywords

[No Author keywords available]

Indexed keywords

BLASTING; BREAKAGE; METHODOLOGY; PREDICTION;

EID: 84873173102     PISSN: 13651609     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijrmms.2012.12.019     Document Type: Article
Times cited : (31)

References (40)
  • 2
    • 6144251472 scopus 로고
    • Wall control blasting in open pits
    • 14th Canadian rock mechanics symposium
    • Bauer A. Wall control blasting in open pits. CIM Special Vol. 30, Canadian Institute of Mining and Metallurgy, 14th Canadian rock mechanics symposium; 1982, p. 3-10.
    • (1982) CIM Special Canadian Institute of Mining and Metallurgy , vol.30 , pp. 3-10
    • Bauer, A.1
  • 4
    • 0019607654 scopus 로고
    • Adjusting blast design for best results
    • Rotterdam: Balkema
    • Jenkins SS. Adjusting blast design for best results. In: Pit and quarry. Rotterdam: Balkema; 1981.
    • (1981) Pit and quarry
    • Jenkins, S.S.1
  • 5
    • 55749100108 scopus 로고    scopus 로고
    • Evaluation of effect of blasting pattern parameters on back break using neural networks
    • Monjezi M, Dehghani H Evaluation of effect of blasting pattern parameters on back break using neural networks. Int J Rock Mech Min Sci 2008, 45:1446-1453.
    • (2008) Int J Rock Mech Min Sci , vol.45 , pp. 1446-1453
    • Monjezi, M.1    Dehghani, H.2
  • 9
    • 60249084777 scopus 로고    scopus 로고
    • Generalization performance of support vector machines and neural networks in run off modeling
    • Behzad M, Asghari K, Morteza E, Palhang M Generalization performance of support vector machines and neural networks in run off modeling. Expert Syst Appl 2009, 36:7624-7629.
    • (2009) Expert Syst Appl , vol.36 , pp. 7624-7629
    • Behzad, M.1    Asghari, K.2    Morteza, E.3    Palhang, M.4
  • 14
    • 9444269032 scopus 로고    scopus 로고
    • Technical report. Institute of Automation, Chinese Academy of Sciences, AI Lab
    • Zhou D, Xiao B, Zhou H. Global geometric of SVM classifiers. Technical report. Institute of Automation, Chinese Academy of Sciences, AI Lab; 2002.
    • (2002) Global geometric of SVM classifiers
    • Zhou, D.1    Xiao, B.2    Zhou, H.3
  • 16
    • 0031375732 scopus 로고    scopus 로고
    • Nonlinear prediction of chaotic time series using a support vector machine
    • Amelia Island, Florida
    • Mukherjee S, Osuna E, Girosi F. Nonlinear prediction of chaotic time series using a support vector machine. In: Proceedings of the 1997 IEEE workshop, Amelia Island, Florida; 1997. p. 511-20.
    • (1997) Proceedings of the 1997 IEEE workshop , pp. 511-520
    • Mukherjee, S.1    Osuna, E.2    Girosi, F.3
  • 17
    • 0041589566 scopus 로고    scopus 로고
    • Support vector interval regression networks for interval regression analysis
    • Jeng JT, Chuang CC, Su SF Support vector interval regression networks for interval regression analysis. Fuzzy Sets Syst 2003, 138(2):283-300.
    • (2003) Fuzzy Sets Syst , vol.138 , Issue.2 , pp. 283-300
    • Jeng, J.T.1    Chuang, C.C.2    Su, S.F.3
  • 18
    • 33846420617 scopus 로고    scopus 로고
    • An application of one-class support vector machines in content based image retrieval
    • Seo KK An application of one-class support vector machines in content based image retrieval. Expert Syst Appl 2007, 33(2):491-498.
    • (2007) Expert Syst Appl , vol.33 , Issue.2 , pp. 491-498
    • Seo, K.K.1
  • 19
    • 35548982127 scopus 로고    scopus 로고
    • Support vector regression model for the estimation of c-ray buildup factors for multi-layer shields
    • Trontl K, Smuc T, Pevec D Support vector regression model for the estimation of c-ray buildup factors for multi-layer shields. Ann Nucl Energy 2007, 34(12):939-952.
    • (2007) Ann Nucl Energy , vol.34 , Issue.12 , pp. 939-952
    • Trontl, K.1    Smuc, T.2    Pevec, D.3
  • 20
    • 44949237228 scopus 로고    scopus 로고
    • Wavelet support vector machine for induction machine fault diagnosis based on transient current signal
    • Widodo A, Yang BS Wavelet support vector machine for induction machine fault diagnosis based on transient current signal. Expert Syst Appl 2008, 35(1-2):307-316.
    • (2008) Expert Syst Appl , vol.35 , Issue.1-2 , pp. 307-316
    • Widodo, A.1    Yang, B.S.2
  • 21
    • 34548510616 scopus 로고    scopus 로고
    • Mapping specific habitats from remotely sensed imagery: support vector machine and support vector data description based classification of coastal saltmarsh habitats
    • Sanchez-Hernandez C, Boyd DS, Foody GM Mapping specific habitats from remotely sensed imagery: support vector machine and support vector data description based classification of coastal saltmarsh habitats. Ecol Inf 2002, 2:83-88.
    • (2002) Ecol Inf , vol.2 , pp. 83-88
    • Sanchez-Hernandez, C.1    Boyd, D.S.2    Foody, G.M.3
  • 22
    • 0036825901 scopus 로고    scopus 로고
    • Modified support vector machines in financial time series forecasting
    • Francis EH, Tay LJ Modified support vector machines in financial time series forecasting. Neurocomputing 2002, 48:847-861.
    • (2002) Neurocomputing , vol.48 , pp. 847-861
    • Francis, E.H.1    Tay, L.J.2
  • 25
    • 17644437641 scopus 로고    scopus 로고
    • Advanced support vector machines and kernel methods
    • Sanchez DV Advanced support vector machines and kernel methods. Neurocomputing 2003, 55:5-20.
    • (2003) Neurocomputing , vol.55 , pp. 5-20
    • Sanchez, D.V.1
  • 26
    • 17644423485 scopus 로고    scopus 로고
    • Efficient performance estimate for one-class support vector machine
    • Tran QA, Liu X, Duan H Efficient performance estimate for one-class support vector machine. Pattern Recognition Lett 2005, 26:1174-1182.
    • (2005) Pattern Recognition Lett , vol.26 , pp. 1174-1182
    • Tran, Q.A.1    Liu, X.2    Duan, H.3
  • 27
    • 33750523404 scopus 로고    scopus 로고
    • Adaptive simplification of solution for support vector machine
    • Li Q, Jiao L, Hao Y Adaptive simplification of solution for support vector machine. Pattern Recognition 2007, 40:972-980.
    • (2007) Pattern Recognition , vol.40 , pp. 972-980
    • Li, Q.1    Jiao, L.2    Hao, Y.3
  • 28
    • 57849101999 scopus 로고    scopus 로고
    • Using domain-specific knowledge in generalization error bounds for support vector machine learning
    • Eryarsoy E, Koehler GJ, Aytug H Using domain-specific knowledge in generalization error bounds for support vector machine learning. Decision Support Syst 2009, 46:481-491.
    • (2009) Decision Support Syst , vol.46 , pp. 481-491
    • Eryarsoy, E.1    Koehler, G.J.2    Aytug, H.3
  • 29
    • 67649213554 scopus 로고    scopus 로고
    • Optimal reduction of solutions for support vector machines
    • Lin HJ, Yeh JP Optimal reduction of solutions for support vector machines. Appl Math Comput 2009, 214:329-335.
    • (2009) Appl Math Comput , vol.214 , pp. 329-335
    • Lin, H.J.1    Yeh, J.P.2
  • 30
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalues problem
    • Scholkopf B, Smola AJ, Muller KR Nonlinear component analysis as a kernel eigenvalues problem. Neural Comput 1998, 10:1299-1319.
    • (1998) Neural Comput , vol.10 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.J.2    Muller, K.R.3
  • 31
    • 0030607269 scopus 로고    scopus 로고
    • The radial basis functions-partial least squares approach as a flexible non-linear regression technique
    • Walczack B, Massart DL The radial basis functions-partial least squares approach as a flexible non-linear regression technique. Anal Chim Acta 1996, 331:177-185.
    • (1996) Anal Chim Acta , vol.331 , pp. 177-185
    • Walczack, B.1    Massart, D.L.2
  • 32
    • 0038259120 scopus 로고    scopus 로고
    • Kernel partial least squares regression in reproducing kernel Hilbert space
    • Rosipal R, Trejo LJ Kernel partial least squares regression in reproducing kernel Hilbert space. J Mach Learning Res 2004, 2:97-123.
    • (2004) J Mach Learning Res , vol.2 , pp. 97-123
    • Rosipal, R.1    Trejo, L.J.2
  • 35
    • 0003425664 scopus 로고    scopus 로고
    • Technical report. Image Speech and Intelligent Systems Research Group, University of Southampton, Southampton, UK
    • Gunn SR. Support vector machines for classification and regression. Technical report. Image Speech and Intelligent Systems Research Group, University of Southampton, Southampton, UK; 1997.
    • (1997) Support vector machines for classification and regression
    • Gunn, S.R.1
  • 36
    • 24944559785 scopus 로고    scopus 로고
    • Nanyang Technological University, School of Electrical and Electronic Engineering
    • Wang L. Support vector machines: theory and applications. Nanyang Technological University, School of Electrical and Electronic Engineering; 2005.
    • (2005) Support vector machines: theory and applications
    • Wang, L.1
  • 37
    • 0345688978 scopus 로고    scopus 로고
    • Determination of the spread parameter in the Gaussian kernel for classification and regression
    • Wang WJ, Xu ZB, Lu WZ, Zhang XY Determination of the spread parameter in the Gaussian kernel for classification and regression. Neurocomputing 2003, 55:643-663.
    • (2003) Neurocomputing , vol.55 , pp. 643-663
    • Wang, W.J.1    Xu, Z.B.2    Lu, W.Z.3    Zhang, X.Y.4
  • 38
    • 0035398081 scopus 로고    scopus 로고
    • Model induction with support vector machines: introduction and application
    • Dibike YB, Velickov S, Solomatine D, Abbott MB Model induction with support vector machines: introduction and application. J Comput Civ Eng 2001, 15(3):208-216.
    • (2001) J Comput Civ Eng , vol.15 , Issue.3 , pp. 208-216
    • Dibike, Y.B.1    Velickov, S.2    Solomatine, D.3    Abbott, M.B.4
  • 39
    • 33746914260 scopus 로고    scopus 로고
    • In: SY Liong, KK Phoon, V Babovic, (editors), Proceedings of the sixth international conference on hydroinformatics, Singapore
    • Han D, Cluckie I. Support vector machines identification for runoff modeling. In: SY Liong, KK Phoon, V Babovic, (editors), Proceedings of the sixth international conference on hydroinformatics, Singapore, 2004, p. 21-4.
    • (2004) Support vector machines identification for runoff modeling , pp. 21-24
    • Han, D.1    Cluckie, I.2
  • 40
    • 33745051604 scopus 로고    scopus 로고
    • The accurate QSPR models to predict the bioconcentration factors of nonionic organic compounds based on the heuristic method and support vector machine
    • Liu H, Yao X, Zhang R, Liu M, Hu Z, Fan B The accurate QSPR models to predict the bioconcentration factors of nonionic organic compounds based on the heuristic method and support vector machine. Chemosphere 2006, 63:722-733.
    • (2006) Chemosphere , vol.63 , pp. 722-733
    • Liu, H.1    Yao, X.2    Zhang, R.3    Liu, M.4    Hu, Z.5    Fan, B.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.