메뉴 건너뛰기




Volumn 331, Issue 3, 1996, Pages 177-185

The Radial Basis Functions - Partial Least Squares approach as a flexible non-linear regression technique

Author keywords

chemometrics; non linear regression; Radial Basis Functions Networks (RBFN); Spline PLS

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; CHEMOMETRICS; PRIORITY JOURNAL; REGRESSION ANALYSIS; STATISTICS; THEORY;

EID: 0030607269     PISSN: 00032670     EISSN: None     Source Type: Journal    
DOI: 10.1016/0003-2670(96)00202-4     Document Type: Article
Times cited : (214)

References (28)
  • 3
    • 0025732436 scopus 로고
    • Neural networks: A new method for solving chemical problems or just a passing phase?
    • [3] J. Zupan and J. Gasteiger, Neural networks: a new method for solving chemical problems or just a passing phase?, Anal. Chim. Acta, 248 (1991) 1-30.
    • (1991) Anal. Chim. Acta , vol.248 , pp. 1-30
    • Zupan, J.1    Gasteiger, J.2
  • 8
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • [8] D.S. Broomhead and D. Lowe, Multivariable functional interpolation and adaptive networks, Complex Systems, 2 (1988) 312-355.
    • (1988) Complex Systems , vol.2 , pp. 312-355
    • Broomhead, D.S.1    Lowe, D.2
  • 9
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • [9] J. Moody and C.J. Darken, Fast learning in networks of locally-tuned processing units, Neural Computation, 1 (1989) 151-160.
    • (1989) Neural Computation , vol.1 , pp. 151-160
    • Moody, J.1    Darken, C.J.2
  • 10
    • 0024922715 scopus 로고
    • Phoneme classification experiments using radial basis functions
    • Washington, DC, June
    • [10] S. Renals and R. Rohwer, Phoneme Classification Experiments Using Radial Basis Functions, Proc. Int. Joint Conf. Neural Networks, Washington, DC, June 1989, p. 461-467.
    • (1989) Proc. Int. Joint Conf. Neural Networks , pp. 461-467
    • Renals, S.1    Rohwer, R.2
  • 11
    • 0025546825 scopus 로고
    • Control system sensor failure detection via networks of localized receptive fields
    • San Diego, CA, May
    • [11] S.C. Yao and E. Zafiriou, Control system sensor failure detection via networks of localized receptive fields, Amer. Control Conf., San Diego, CA, May 1990.
    • (1990) Amer. Control Conf.
    • Yao, S.C.1    Zafiriou, E.2
  • 12
    • 0026261955 scopus 로고
    • A non-linear network model for continuous learning
    • [12] P.A. Jokinen, A non-linear network model for continuous learning, Neurocomputing, 3 (1991) 157-176.
    • (1991) Neurocomputing , vol.3 , pp. 157-176
    • Jokinen, P.A.1
  • 13
    • 0028341934 scopus 로고
    • On radial basis function nets and kernel regression: Statistical consistency, convergence rates, and receptive field size
    • [13] L. Xu, A. Krzyzak and A. Yuille, On radial basis function nets and kernel regression: Statistical consistency, convergence rates, and receptive field size, Neural Networks, 7 (1994) 60-628.
    • (1994) Neural Networks , vol.7 , pp. 60-628
    • Xu, L.1    Krzyzak, A.2    Yuille, A.3
  • 15
    • 0003269032 scopus 로고
    • Genetic algorithms in search
    • Addison-Wesley Publishing Company, New York
    • [15] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Publishing Company, New York, 1989.
    • (1989) Optimization and Machine Learning
    • Goldberg, D.E.1
  • 16
    • 0027284874 scopus 로고
    • Understanding and using genetic algorithms, part 1. Concepts, properties and context
    • [16] C.B. Lucasius and G. Kateman, Understanding and using genetic algorithms, Part 1. Concepts, properties and context, Chemometrics and Intelligent Laboratory Systems, 19 (1993) 1-33.
    • (1993) Chemometrics and Intelligent Laboratory Systems , vol.19 , pp. 1-33
    • Lucasius, C.B.1    Kateman, G.2
  • 17
    • 0027945489 scopus 로고
    • Understanding and using genetic algorithms, part 2. Representation, configuration and hybridization
    • [17] C.B. Lucasius and G. Kateman, Understanding and using genetic algorithms, Part 2. Representation, configuration and hybridization, Chemometrics and Intelligent Laboratory Systems, 25 (1994) 99-145.
    • (1994) Chemometrics and Intelligent Laboratory Systems , vol.25 , pp. 99-145
    • Lucasius, C.B.1    Kateman, G.2
  • 18
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • [18] S. Chen, C.F.N. Cowan and P.M. Grant, Orthogonal least squares learning algorithm for radial basis function networks, IEEE Transactions on Neural Networks, 2 (1991) 302-309.
    • (1991) IEEE Transactions on Neural Networks , vol.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 19
    • 0029256623 scopus 로고
    • On the number and the distribution of RBF centers
    • [19] V.D. Sanchez A., On the number and the distribution of RBF centers, Neurocomputing, 7 (1995) 17-202.
    • (1995) Neurocomputing , vol.7 , pp. 17-202
    • Sanchez A, V.D.1
  • 23
    • 0000629975 scopus 로고
    • Cross-validation choice and assessment of statistical prediction
    • [23] M. Stone, Cross-validation choice and assessment of statistical prediction, J. Roy. Stat. Soc., B (1974) 111-133.
    • (1974) J. Roy. Stat. Soc. , vol.B , pp. 111-133
    • Stone, M.1
  • 24
    • 0000796382 scopus 로고
    • Exploiting neurons with localized receptive fields to learn chaos
    • [24] K. Stokbro, D.K, Umberger and J.A. Hertz, Exploiting neurons with localized receptive fields to learn chaos, Complex Systems, 4 (1990) 603-622.
    • (1990) Complex Systems , vol.4 , pp. 603-622
    • Stokbro, K.1    Umberger, D.K.2    Hertz, J.A.3
  • 25
    • 0027147212 scopus 로고
    • Wave-net: A multiresolution, hierarchical neural network with localized learning
    • [25] B.R. Bakshi and G. Stephanopoulos, Wave-net: a multiresolution, hierarchical neural network with localized learning, AIChE Journal, 39 (1993) 57-81.
    • (1993) AIChE Journal , vol.39 , pp. 57-81
    • Bakshi, B.R.1    Stephanopoulos, G.2
  • 27
    • 0025415732 scopus 로고
    • Forecasting and control using adaptive connectionist networks
    • [27] B.E. Ydstie, Forecasting and control using adaptive connectionist networks, Comp. Chem. Eng., 14 (1990) 583.
    • (1990) Comp. Chem. Eng. , vol.14 , pp. 583
    • Ydstie, B.E.1
  • 28
    • 84984336225 scopus 로고
    • Interactive variable selection (IVS) for PLS. Part 1: Theory and algorithms
    • [28] F. Lindgren, P. Geladi, S. Rannar and S. Void, Interactive variable selection (IVS) for PLS. Part 1: Theory and algorithms, J. Chemometrics, 8 (1994) 349-363.
    • (1994) J. Chemometrics , vol.8 , pp. 349-363
    • Lindgren, F.1    Geladi, P.2    Rannar, S.3    Void, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.