-
2
-
-
0039253846
-
Mining frequent patterns without candidate generation
-
Dallas, TX, ACM
-
Han J, Pei J, Yin Y. Mining frequent patterns without candidate generation. In: Proceedings of the ACM SIGMOD International Conference on Management of Data. Dallas, TX: ACM; 2000, 1-12.
-
(2000)
Proceedings of the ACM SIGMOD International Conference on Management of Data
, pp. 1-12
-
-
Han, J.1
Pei, J.2
Yin, Y.3
-
4
-
-
33749319347
-
Hamilton HJ, Interestingness measures for data mining, a survey
-
Geng L, Hamilton HJ: Interestingness measures for data mining: a survey. ACM Comput Surv 2006, 38:9.
-
(2006)
ACM Comput Surv
, vol.38
, pp. 9
-
-
Geng, L.1
-
5
-
-
28544452631
-
A survey of interestingness measures for knowledge discovery
-
McGarry K. A survey of interestingness measures for knowledge discovery. Knowl Eng Rev 2005, 20:39-61.
-
(2005)
Knowl Eng Rev
, vol.20
, pp. 39-61
-
-
McGarry, K.1
-
6
-
-
0030380606
-
What makes patterns interesting in knowledge discovery systems
-
Silberschatz A, Tuzhilin A. What makes patterns interesting in knowledge discovery systems. IEEE Trans Knowl Data Eng 1996, 8:970-974.
-
(1996)
IEEE Trans Knowl Data Eng
, vol.8
, pp. 970-974
-
-
Silberschatz, A.1
Tuzhilin, A.2
-
7
-
-
85172416536
-
On subjective measures of interestingness in knowledge discovery
-
Palo Alto, CA, AAAI
-
Silberschatz A, Tuzhilin A. On subjective measures of interestingness in knowledge discovery. In: Knowledge Discovery and Data Mining (KDD-95). Palo Alto, CA: AAAI; 1995, 275-281.
-
(1995)
Knowledge Discovery and Data Mining (KDD-95)
, pp. 275-281
-
-
Silberschatz, A.1
Tuzhilin, A.2
-
9
-
-
0003113325
-
Finding interesting rules from large sets of discovered association rules
-
Gaithersburg, MD, ACM
-
KlemettinenM,MannilaH, Ronkainen P, ToivonenH, Verkamo AI. Finding interesting rules from large sets of discovered association rules. In: Proceedings of the Third International Conference on Information and Knowledge Management. Gaithersburg, MD: ACM; 1994, 401-407.
-
(1994)
Proceedings of the Third International Conference on Information and Knowledge Management
, pp. 401-407
-
-
Klemettinen, M.1
Mannila, H.2
Ronkainen, P.3
Toivonen, H.4
Verkamo, A.I.5
-
11
-
-
0003269280
-
Using general impressions to analyze discovered classification rules
-
Palo Alto, CA, AAAI Press
-
Liu B, Hsu W, Chen S. Using general impressions to analyze discovered classification rules. In: Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining (KDD-97). Palo Alto, CA: AAAI Press; 1997, 31-36.
-
(1997)
Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining (KDD-97)
, pp. 31-36
-
-
Liu, B.1
Hsu, W.2
Chen, S.3
-
12
-
-
0033333282
-
Finding interesting patterns using user expectations
-
Liu B, Hsu W, Mun L-F, Lee H-Y. Finding interesting patterns using user expectations. IEEE Trans Knowl Data Eng 1999, 11:817-832.
-
(1999)
IEEE Trans Knowl Data Eng
, vol.11
, pp. 817-832
-
-
Liu, B.1
Hsu, W.2
Mun, L.F.3
Lee, H.Y.4
-
14
-
-
33646753131
-
Mining unexpected rules by pushing user dynamics
-
Washington, D. C., ACM
-
Wang K, Jiang Y, Lakshmanan LVS. Mining unexpected rules by pushing user dynamics. In: Proceedings of the ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, D.C.: ACM; 2003, 246-255.
-
(2003)
Proceedings of the ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 246-255
-
-
Wang, K.1
Jiang, Y.2
Lakshmanan, L.V.S.3
-
16
-
-
70649111792
-
Probabilistic Graphical Models, Principles and Techniques
-
Cambridge, MA, MIT Press
-
Koller D, Friedman N. Probabilistic Graphical Models: Principles and Techniques. Cambridge, MA:MIT Press; 2009.
-
(2009)
-
-
Koller, D.1
Friedman, N.2
-
17
-
-
80855129853
-
Maximum entropy models and subjective interestingness, an application to tiles in binary databases
-
De Bie T. Maximum entropy models and subjective interestingness: an application to tiles in binary databases. Data Min Knowl Discov 2010, 1-40.
-
(2010)
Data Min Knowl Discov
, pp. 1-40
-
-
De Bie, T.1
-
21
-
-
32344436340
-
Fast discovery of unexpected patterns in data, relative to a Bayesian network
-
Chicago, IL, ACM;
-
Jaroszewicz S, Scheffer T. Fast discovery of unexpected patterns in data, relative to a Bayesian network. In: Proceedings of the Eleventh ACM SIGKDD International conference on Knowledge Discovery in Data Mining. Chicago, IL: ACM; 2005, 118-127.
-
(2005)
Proceedings of the Eleventh ACM SIGKDD International conference on Knowledge Discovery in Data Mining
, pp. 118-127
-
-
Jaroszewicz, S.1
Scheffer, T.2
-
22
-
-
33749566545
-
Discovering interesting patterns through user's interactive feedback
-
Philadelphia, PA, ACM
-
Xin D, Shen X, Mei Q, Han J. Discovering interesting patterns through user's interactive feedback. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Philadelphia, PA: ACM; 2006, 773-778.
-
(2006)
Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 773-778
-
-
Xin, D.1
Shen, X.2
Mei, Q.3
Han, J.4
-
23
-
-
37049039428
-
Assessing data mining results via swap randomization
-
Gionis A, Mannila H, Mielikainen T, Tsaparas P. Assessing data mining results via swap randomization. ACM Trans Knowl Discov Data 2007, 1:14.
-
(2007)
ACM Trans Knowl Discov Data
, vol.1
, pp. 14
-
-
Gionis, A.1
Mannila, H.2
Mielikainen, T.3
Tsaparas, P.4
-
24
-
-
70350663120
-
Tell me something i don't know, randomization strategies for iterative data mining
-
Paris, ACM
-
Hanhijrvi S, Ojala M, Vuokko N, Puolamaki K, Tatti N, Mannila H. Tell me something i don't know: randomization strategies for iterative data mining. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris: ACM; 2009, 379-388.
-
(2009)
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 379-388
-
-
Hanhijrvi, S.1
Ojala, M.2
Vuokko, N.3
Puolamaki, K.4
Tatti, N.5
Mannila, H.6
-
25
-
-
77950233355
-
Randomization methods for assessing data analysis results on real-valued matrices
-
Ojala M, Vuokko N, Kallio A, Haiminen N, Mannila H. Randomization methods for assessing data analysis results on real-valued matrices. Stat Anal Data Min 2009, 2:209-230.
-
(2009)
Stat Anal Data Min
, vol.2
, pp. 209-230
-
-
Ojala, M.1
Vuokko, N.2
Kallio, A.3
Haiminen, N.4
Mannila, H.5
-
28
-
-
0020187981
-
On the rationale of maximum-entropy methods
-
Jaynes ET. On the rationale of maximum-entropy methods. Proc IEEE 1982, 20:939-952.
-
(1982)
Proc IEEE
, vol.20
, pp. 939-952
-
-
Jaynes, E.T.1
-
31
-
-
77958060227
-
Using background knowledge to rank itemsets
-
Tatti N, Mampaey M. Using background knowledge to rank itemsets. Data Min Knowl Discov 2010, 21:293-309.
-
(2010)
Data Min Knowl Discov
, vol.21
, pp. 293-309
-
-
Tatti, N.1
Mampaey, M.2
-
33
-
-
79951736794
-
Assessing data mining results on matrices with randomization
-
Sydney, Australia, IEEE Computer Society
-
Ojala M. Assessing data mining results on matrices with randomization. In: Proceedings of the 2010 IEEE International Conference on Data Mining. Sydney, Australia: IEEE Computer Society; 2010, 959-964.
-
(2010)
Proceedings of the 2010 IEEE International Conference on Data Mining
, pp. 959-964
-
-
Ojala, M.1
-
35
-
-
84891128433
-
Subjectively interesting alternative clusters
-
Athens, Greece, CEUR Workshop Proceedings (CEUR-WS. org) (online)
-
De Bie T. Subjectively interesting alternative clusters. In: Proceedings of the 2nd MultiClust Workshop: Discovering, Summarizing, and Using Multiple Clusterings. Athens, Greece: CEUR Workshop Proceedings (CEUR-WS.org) (online); 2011, 43-54.
-
(2011)
Proceedings of the 2nd MultiClust Workshop, Discovering, Summarizing, and Using Multiple Clusterings
, pp. 43-54
-
-
De Bie, T.1
-
37
-
-
0002758989
-
Mining surprising patterns using temporal description length
-
San Francisco, CA, Morgan Kaufmann
-
Chakrabarti S, Sarawagi S, Dom B. Mining surprising patterns using temporal description length. In: Proceedings of the 24rd International Conference on Very Large Data Bases. San Francisco, CA: Morgan Kaufmann; 1998, 606-617.
-
(1998)
Proceedings of the 24rd International Conference on Very Large Data Bases
, pp. 606-617
-
-
Chakrabarti, S.1
Sarawagi, S.2
Dom, B.3
-
38
-
-
0003247721
-
Discovering unexpected patterns in temporal data using temporal logic
-
Etzion O, Jajodia S, Sripada S, eds. New York, Springer;
-
Berger G, Tuzhilin A. Discovering unexpected patterns in temporal data using temporal logic. In: Etzion O, Jajodia S, Sripada S, eds. Temporal Databases: Research and Practice. New York: Springer; 1998.
-
(1998)
Temporal Databases, Research and Practice
-
-
Berger, G.1
Tuzhilin, A.2
-
39
-
-
33745012299
-
Modularity and community structure in networks
-
Newman MEJ. Modularity and community structure in networks. Proc Natl Acad Sci USA 2006, 103:8577-8582.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 8577-8582
-
-
Newman, M.E.J.1
-
40
-
-
48949105330
-
Mining unexpected Web usage behaviors
-
Proceedings of the 8th industrial conference on Advances in Data Mining, Medical Applications, E-Commerce, Marketing, and Theoretical Aspects. Leipzig, Germany, Springer-Verlag
-
Li D, Laurent A, Poncelet P. Mining unexpected Web usage behaviors. In: Proceedings of the 8th industrial conference on Advances in Data Mining: Medical Applications, E-Commerce, Marketing, and Theoretical Aspects. Leipzig, Germany: Springer-Verlag; 2008, 283-297.
-
(2008)
, pp. 283-297
-
-
Li, D.1
Laurent, A.2
Poncelet, P.3
-
43
-
-
84873155427
-
Semantics-based classification of rule interestingness
-
Zhao Y, Zhang C, Cao L, eds. Hershey, PA, IGI
-
Blanchard J, Guillet F, Kuntz P. Semantics-based classification of rule interestingness. In: Zhao Y, Zhang C, Cao L, eds. Post-Mining of Association Rules: Techniques for Effective Knowledge Extraction. Hershey, PA: IGI; 2009, 56-79.
-
(2009)
Post-Mining of Association Rules, Techniques for Effective Knowledge Extraction
, pp. 56-79
-
-
Blanchard, J.1
Guillet, F.2
Kuntz, P.3
-
44
-
-
0001283345
-
The interestingness of deviations
-
Fayyad VM, Uthurusamy R, eds. Seattle, Washington, AAAI Workshop (KDD '94)
-
Piatetsky-Shapiro G, Matheus CJ. The interestingness of deviations. In: Fayyad VM, Uthurusamy R, eds. Knowledge Discovery in Databases, Papers. Seattle, Washington: AAAI Workshop (KDD '94); 1994: 25-36.
-
(1994)
Knowledge Discovery in Databases, Papers
, pp. 25-36
-
-
Piatetsky-Shapiro, G.1
Matheus, C.J.2
-
46
-
-
3543128814
-
A framework for evaluating knowledge-based interestingness of association rules
-
Shekar B, Natarajan R. A framework for evaluating knowledge-based interestingness of association rules. Fuzzy Optim Decis Mak 2004, 3:157-185.
-
(2004)
Fuzzy Optim Decis Mak
, vol.3
, pp. 157-185
-
-
Shekar, B.1
Natarajan, R.2
-
47
-
-
77951766215
-
Knowledge-based interactive postmining of association rules using ontologies
-
Marinica C, Guillet F. Knowledge-based interactive postmining of association rules using ontologies. IEEE Trans Knowl Data Eng 2010, 22:784-797.
-
(2010)
IEEE Trans Knowl Data Eng
, vol.22
, pp. 784-797
-
-
Marinica, C.1
Guillet, F.2
-
49
-
-
3543143695
-
Interesting associations rules in multiple taxonomies
-
Kaatsheuvel, The Netherlands
-
de Graaf JM, Kosters WA, Witteman JJ. Interesting associations rules in multiple taxonomies. In: Proceedings of BNAIC'00. Kaatsheuvel, The Netherlands; 2000, 93-100.
-
(2000)
Proceedings of BNAIC'00
, pp. 93-100
-
-
de Graaf, J.M.1
Kosters, W.A.2
Witteman, J.J.3
-
50
-
-
0033207925
-
On rule interestingness measures
-
Freitas AA: On rule interestingness measures. Knowl Based Syst 1999, 12:309-315.
-
(1999)
Knowl Based Syst
, vol.12
, pp. 309-315
-
-
Freitas, A.A.1
-
51
-
-
0242625291
-
Selecting the right interestingness measures
-
Edmonton, Canada, ACM
-
Tan P, Kumar V, Srivastava J. Selecting the right interestingness measures. In: Proceedings of the 8th ACM SIGKDD conference on Knowledge Discovery and Data Mining (KDD'02). Edmonton, Canada: ACM; 2002, 32-41.
-
(2002)
Proceedings of the 8th ACM SIGKDD conference on Knowledge Discovery and Data Mining (KDD'02)
, pp. 32-41
-
-
Tan, P.1
Kumar, V.2
Srivastava, J.3
-
53
-
-
84947768405
-
Visually aided exploration of interesting association rules
-
Melbourne, Australia
-
Liu B, Hsu W, Wang K, Chen S. Visually aided exploration of interesting association rules. In: Proceedings of the 3rd Pasific-Asia Conference on Methodologies for Knowledge Discovery and DataMining (PAKDD). Melbourne, Australia: 1998, 380-389.
-
(1998)
Proceedings of the 3rd Pasific-Asia Conference on Methodologies for Knowledge Discovery and DataMining (PAKDD)
, pp. 380-389
-
-
Liu, B.1
Hsu, W.2
Wang, K.3
Chen, S.4
|