-
1
-
-
77952415510
-
-
Kdd-cup-98 dataset. http://kdd.ics.uci.edu/databases/kddcup98/kddcup98. html.
-
Kdd-cup-98 Dataset
-
-
-
2
-
-
0002221136
-
Fast algorithm for mining association rules
-
September
-
R. Agrawal and R. Srikant. Fast algorithm for mining association rules. In VLDB, pages 487-499, September 1994.
-
(1994)
VLDB
, pp. 487-499
-
-
Agrawal, R.1
Srikant, R.2
-
4
-
-
77952398083
-
Constraint-based rule mining in large, dense databases
-
R. Bayardo, R. Agrawal, and D. Gunopulos. Constraint-based rule mining in large, dense databases. In ICDE. IEEE, 1999.
-
(1999)
ICDE. IEEE
-
-
Bayardo, R.1
Agrawal, R.2
Gunopulos, D.3
-
5
-
-
0008707038
-
Bottom-up computation of sparse and iceberg cubes
-
K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg cubes. In SIGMOD, pages 359-370, 1999.
-
(1999)
SIGMOD
, pp. 359-370
-
-
Beyer, K.1
Ramakrishnan, R.2
-
6
-
-
0031161999
-
Beyond market baskets: Generalizing association rules to correlations
-
S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: Generalizing association rules to correlations. In SIGMOD, pages 265-276, 1997.
-
(1997)
SIGMOD
, pp. 265-276
-
-
Brin, S.1
Motwani, R.2
Silverstein, C.3
-
7
-
-
0003113325
-
Finding interesting rules from large sets of discovered association rules
-
M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonene, and A. Verkamo. Finding interesting rules from large sets of discovered association rules. In CIKM 94, 1994.
-
(1994)
CIKM 94
-
-
Klemettinen, M.1
Mannila, H.2
Ronkainen, P.3
Toivonene, H.4
Verkamo, A.5
-
9
-
-
0003269280
-
Using general impressions to analyze discovered classification rules
-
B. Liu, W. Hsu, and S. Chen. Using general impressions to analyze discovered classification rules. In KDD, 1997.
-
(1997)
KDD
-
-
Liu, B.1
Hsu, W.2
Chen, S.3
-
10
-
-
0032092760
-
Exploratory mining and pruning optimizations of constrained associations rules
-
R. Ng, L. V. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning optimizations of constrained associations rules. In SIGMOD, pages 13-24, 1998.
-
(1998)
SIGMOD
, pp. 13-24
-
-
Ng, R.1
Lakshmanan, L.V.2
Han, J.3
Pang, A.4
-
11
-
-
77952406935
-
A belief-drievn method for discovering unexpected patterns
-
B. Padmanabhan and A. Tuzhilin. A belief-drievn method for discovering unexpected patterns. In KDD-98. SIGKDD, 1998.
-
(1998)
KDD-98. SIGKDD
-
-
Padmanabhan, B.1
Tuzhilin, A.2
-
12
-
-
77952368392
-
Unexpectedness as a measure of interestingness in knowledge discovery
-
B. Padmanabhan and A. Tuzhilin. Unexpectedness as a measure of interestingness in knowledge discovery. In KDD-98. SIGKDD, 1998.
-
(1998)
KDD-98. SIGKDD
-
-
Padmanabhan, B.1
Tuzhilin, A.2
-
13
-
-
0034593047
-
Small is beautiful: Discovering the minimal set of unexpected patterns
-
SIGKDD
-
B. Padmanabhan and A. Tuzhilin. Small is beautiful: Discovering the minimal set of unexpected patterns. In SIGKDD, pages 54-63. SIGKDD, 2000.
-
(2000)
SIGKDD
, pp. 54-63
-
-
Padmanabhan, B.1
Tuzhilin, A.2
-
14
-
-
0002877253
-
Discovery, analysis and presentation of strong rules
-
MIT Press
-
G. Piatesky-Shapiro. Discovery, analysis and presentation of strong rules. In Knowledge Discovery in Databases, pages 229-248. MIT Press, 1991.
-
(1991)
Knowledge Discovery in Databases
, pp. 229-248
-
-
Piatesky-Shapiro, G.1
-
16
-
-
0012952367
-
Interestingnes via what is not interesting
-
SIGKDD
-
S. Sahar. Interestingnes via what is not interesting. In SIGKDD, pages 332-336. SIGKDD, 1999.
-
(1999)
SIGKDD
, pp. 332-336
-
-
Sahar, S.1
-
17
-
-
85172416536
-
On subjective measures of interestingnessin in knowledge discovery
-
KDD
-
A. Silberschatz and A. Tuzhilin. On subjective measures of interestingnessin in knowledge discovery. In KDD, pages 275-281. KDD, 1995.
-
(1995)
KDD
, pp. 275-281
-
-
Silberschatz, A.1
Tuzhilin, A.2
-
19
-
-
85162588849
-
Mining association rules with item constraints
-
SIGKDD
-
R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item constraints. In KDD, pages 67-73. SIGKDD, 1997.
-
(1997)
KDD
, pp. 67-73
-
-
Srikant, R.1
Vu, Q.2
Agrawal, R.3
-
21
-
-
0013065514
-
Pushing support constraints into frequent itemset mining
-
K. Wang, Y. He, and J. Han. Pushing support constraints into frequent itemset mining. In VLDB, 2000.
-
(2000)
VLDB
-
-
Wang, K.1
He, Y.2
Han, J.3
-
22
-
-
77952376399
-
Pushing aggregate constraints by divide-and-approximate
-
K. Wang, Y. Jiang, J. Yu, G. Dong, and J. Han. Pushing aggregate constraints by divide-and-approximate. In ICDE. IEEE, 2003.
-
(2003)
ICDE. IEEE
-
-
Wang, K.1
Jiang, Y.2
Yu, J.3
Dong, G.4
Han, J.5
-
23
-
-
77952374419
-
Generating non-redundant association rules
-
M. Zaki. Generating non-redundant association rules. In SIGKDD 2000. SIGKDD, 2000.
-
(2000)
SIGKDD 2000. SIGKDD
-
-
Zaki, M.1
|