-
1
-
-
34248223285
-
Biology of incretins: GLP-1 and GIP
-
Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroen-terology 2007;132:2131-2157
-
(2007)
Gastroen-terology
, vol.132
, pp. 2131-2157
-
-
Baggio, L.L.1
Drucker, D.J.2
-
2
-
-
79961202907
-
Metabolic impact of glucagon deficiency
-
Hayashi Y. Metabolic impact of glucagon deficiency. Diabetes Obes Metab 2011;13(Suppl 1):151-157
-
(2011)
Diabetes Obes Metab
, vol.13
, Issue.SUPPL. 1
, pp. 151-157
-
-
Hayashi, Y.1
-
3
-
-
0021864131
-
Glucagon physiology and pathophysiology in the light of new advances
-
Unger RH. Glucagon physiology and pathophysiology in the light of new advances. Diabetologia 1985;28:574-578
-
(1985)
Diabetologia
, vol.28
, pp. 574-578
-
-
Unger, R.H.1
-
5
-
-
0018230510
-
Control of hepatic glucose output by glucagon and insulin in the intact dog
-
Cherrington AD, Chiasson JL, Liljenquist JE, Lacy WW, Park CR. Control of hepatic glucose output by glucagon and insulin in the intact dog. Bio-chem Soc Symp 1978;43:31-45
-
(1978)
Bio-chem Soc Symp
, vol.43
, pp. 31-45
-
-
Cherrington, A.D.1
Chiasson, J.L.2
Liljenquist, J.E.3
Lacy, W.W.4
Park, C.R.5
-
6
-
-
0023589251
-
Role of hyper-glucagonemia in maintenance of increased rates of hepatic glucose output in type II diabetics
-
Baron AD, Schaeffer L, Shragg P, Kolterman OG. Role of hyper-glucagonemia in maintenance of increased rates of hepatic glucose output in type II diabetics. Diabetes 1987;36:274-283
-
(1987)
Diabetes
, vol.36
, pp. 274-283
-
-
Baron, A.D.1
Schaeffer, L.2
Shragg, P.3
Kolterman, O.G.4
-
7
-
-
0034524938
-
Lack of suppression of glucagon contributes to postprandial hyperglycemia in subjects with type 2 diabetes mellitus
-
Shah P, Vella A, Basu A, Basu R, Schwenk WF, Rizza RA. Lack of suppression of glucagon contributes to postprandial hyperglycemia in subjects with type 2 diabetes mellitus. J Clin Endocrinol Metab 2000;85: 4053-4059
-
(2000)
J Clin Endocrinol Metab
, vol.85
, pp. 4053-4059
-
-
Shah, P.1
Vella, A.2
Basu, A.3
Basu, R.4
Schwenk, W.F.5
Rizza, R.A.6
-
8
-
-
4644301168
-
Hepatic glucagon receptor binding and glucose-lowering in vivo by peptidyl and non-peptidyl gluca-gon receptor antagonists
-
Dallas-Yang Q, Shen X, Strowski M, et al. Hepatic glucagon receptor binding and glucose-lowering in vivo by peptidyl and non-peptidyl gluca-gon receptor antagonists. Eur J Pharmacol 2004;501:225-234
-
(2004)
Eur J Pharmacol
, vol.501
, pp. 225-234
-
-
Dallas-Yang, Q.1
Shen, X.2
Strowski, M.3
-
9
-
-
0028112003
-
Immunoneutralization of endogenous glucagon with monoclonal glucagon antibody normalizes hyperglycaemia in moderately streptozotocin-diabetic rats
-
Brand CL, Rolin B, Jørgensen PN, Svendsen I, Kristensen JS, Holst JJ. Immunoneutralization of endogenous glucagon with monoclonal glucagon antibody normalizes hyperglycaemia in moderately streptozotocin-diabetic rats. Diabetologia 1994;37:985-993
-
(1994)
Diabetologia
, vol.37
, pp. 985-993
-
-
Brand, C.L.1
Rolin, B.2
Jørgensen, P.N.3
Svendsen, I.4
Kristensen, J.S.5
Holst, J.J.6
-
10
-
-
0037417984
-
Lower blood glucose, hyper-glucagonemia, and pancreatic a cell hyperplasia in glucagon receptor knockout mice
-
Gelling RW, Du XQ, Dichmann DS, et al. Lower blood glucose, hyper-glucagonemia, and pancreatic a cell hyperplasia in glucagon receptor knockout mice. Proc Natl Acad Sci USA 2003;100:1438-1443
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 1438-1443
-
-
Gelling, R.W.1
Du, X.Q.2
Dichmann, D.S.3
-
11
-
-
0842288445
-
Reduction in glucagon receptor expression by an antisense oligonucleotide ameliorates diabetic syndrome in db/db mice
-
Liang Y, Osborne MC, Monia BP, et al. Reduction in glucagon receptor expression by an antisense oligonucleotide ameliorates diabetic syndrome in db/db mice. Diabetes 2004;53:410-417
-
(2004)
Diabetes
, vol.53
, pp. 410-417
-
-
Liang, Y.1
Osborne, M.C.2
Monia, B.P.3
-
12
-
-
0036296165
-
Glycemic control in mice with targeted disruption of the glucagon receptor gene
-
Parker JC, Andrews KM, Allen MR, Stock JL, McNeish JD. Glycemic control in mice with targeted disruption of the glucagon receptor gene. Biochem Biophys Res Commun 2002;290:839-843
-
(2002)
Biochem Biophys Res Commun
, vol.290
, pp. 839-843
-
-
Parker, J.C.1
Andrews, K.M.2
Allen, M.R.3
Stock, J.L.4
McNeish, J.D.5
-
13
-
-
85047693695
-
Hepatic and glucagon-like peptide-1-mediated reversal of diabetes by glucagon receptor antisense oligonucle-otide inhibitors
-
Sloop KW, Cao JX, Siesky AM, et al. Hepatic and glucagon-like peptide-1-mediated reversal of diabetes by glucagon receptor antisense oligonucle-otide inhibitors. J Clin Invest 2004;113:1571-1581
-
(2004)
J Clin Invest
, vol.113
, pp. 1571-1581
-
-
Sloop, K.W.1
Cao, J.X.2
Siesky, A.M.3
-
14
-
-
33845522289
-
Glucagon receptor knockout mice display increased insulin sensitivity and impaired b-cell function
-
Sørensen H, Winzell MS, Brand CL, et al. Glucagon receptor knockout mice display increased insulin sensitivity and impaired b-cell function. Diabetes 2006;55:3463-3469
-
(2006)
Diabetes
, vol.55
, pp. 3463-3469
-
-
Sørensen, H.1
Winzell, M.S.2
Brand, C.L.3
-
15
-
-
34249930188
-
Glucagon receptor antagonism improves islet function in mice with insulin resistance induced by a high-fat diet
-
Winzell MS, Brand CL, Wierup N, et al. Glucagon receptor antagonism improves islet function in mice with insulin resistance induced by a high-fat diet. Diabetologia 2007;50:1453-1462
-
(2007)
Diabetologia
, vol.50
, pp. 1453-1462
-
-
Winzell, M.S.1
Brand, C.L.2
Wierup, N.3
-
16
-
-
33845919110
-
Glucagon receptor knockout mice are resistant to diet-induced obesity and streptozotocin-mediated beta cell loss and hyperglycaemia
-
Conarello SL, Jiang G, Mu J, et al. Glucagon receptor knockout mice are resistant to diet-induced obesity and streptozotocin-mediated beta cell loss and hyperglycaemia. Diabetologia 2007;50:142-150
-
(2007)
Diabetologia
, vol.50
, pp. 142-150
-
-
Conarello, S.L.1
Jiang, G.2
Mu, J.3
-
17
-
-
78650903000
-
GIP and GLP-1, the two incretin hormones: Similarities and differences
-
Seino Y, Fukushima M, Yabe D. GIP and GLP-1, the two incretin hormones: Similarities and differences. J Diabetes Invest 2010;1:8-23
-
(2010)
J Diabetes Invest
, vol.1
, pp. 8-23
-
-
Seino, Y.1
Fukushima, M.2
Yabe, D.3
-
18
-
-
78649364103
-
K-cells and glucose-dependent insulinotropic poly-peptide in health and disease
-
Cho YM, Kieffer TJ. K-cells and glucose-dependent insulinotropic poly-peptide in health and disease. Vitam Horm 2010;84:111-150
-
(2010)
Vitam Horm
, vol.84
, pp. 111-150
-
-
Cho, Y.M.1
Kieffer, T.J.2
-
19
-
-
0017638415
-
Synthetic gastric inhibitory polypeptide. Stimulatory effect on insulin and glucagon secretion in the rat
-
Taminato T, Seino Y, Goto Y, Inoue Y, Kadowaki S. Synthetic gastric inhibitory polypeptide. Stimulatory effect on insulin and glucagon secretion in the rat. Diabetes 1977;26:480-484
-
(1977)
Diabetes
, vol.26
, pp. 480-484
-
-
Taminato, T.1
Seino, Y.2
Goto, Y.3
Inoue, Y.4
Kadowaki, S.5
-
20
-
-
82255185915
-
Glucose-dependent insulinotropic polypeptide: A bifunctional glucose-dependent regulator of glucagon and insulin secretion in humans
-
Christensen M, Vedtofte L, Holst JJ, Vilsbøll T, Knop FK. Glucose-dependent insulinotropic polypeptide: a bifunctional glucose-dependent regulator of glucagon and insulin secretion in humans. Diabetes 2011;60:3103-3109
-
(2011)
Diabetes
, vol.60
, pp. 3103-3109
-
-
Christensen, M.1
Vedtofte, L.2
Holst, J.J.3
Vilsbøll, T.4
Knop, F.K.5
-
21
-
-
73249117478
-
Mice deficient for glucagon gene-derived peptides display normoglycemia and hyperplasia of islet a-cells but not of intestinal L-cells
-
Hayashi Y, Yamamoto M, Mizoguchi H, et al. Mice deficient for glucagon gene-derived peptides display normoglycemia and hyperplasia of islet a-cells but not of intestinal L-cells. Mol Endocrinol 2009;23:1990-1999
-
(2009)
Mol Endocrinol
, vol.23
, pp. 1990-1999
-
-
Hayashi, Y.1
Yamamoto, M.2
Mizoguchi, H.3
-
22
-
-
0007866067
-
Glucose intolerance caused by a defect in the entero-insular axis: A study in gastric inhibitory polypeptide receptor knockout mice
-
Miyawaki K, Yamada Y, Yano H, et al. Glucose intolerance caused by a defect in the entero-insular axis: a study in gastric inhibitory polypeptide receptor knockout mice. Proc Natl Acad Sci USA 1999;96:14843-14847
-
(1999)
Proc Natl Acad Sci USA
, vol.96
, pp. 14843-14847
-
-
Miyawaki, K.1
Yamada, Y.2
Yano, H.3
-
23
-
-
0025613755
-
Isolation of pancreatic islets and primary culture of the intact microorgans or of dispersed islet cells
-
Wollheim CB, Meda P, Halban PA. Isolation of pancreatic islets and primary culture of the intact microorgans or of dispersed islet cells. Methods Enzymol 1990;192:188-223
-
(1990)
Methods Enzymol
, vol.192
, pp. 188-223
-
-
Wollheim, C.B.1
Meda, P.2
Halban, P.A.3
-
24
-
-
0031747107
-
Enhanced glucose-dependent insulinotropic polypeptide secretion and insulinotropic action in glucagon-like peptide 1 receptor-/-mice
-
Pederson RA, Satkunarajah M, McIntosh CH, et al. Enhanced glucose-dependent insulinotropic polypeptide secretion and insulinotropic action in glucagon-like peptide 1 receptor-/-mice. Diabetes 1998;47:1046-1052
-
(1998)
Diabetes
, vol.47
, pp. 1046-1052
-
-
Pederson, R.A.1
Satkunarajah, M.2
McIntosh, C.H.3
-
25
-
-
77951675095
-
Glucose-dependent insulinotropic polypeptide is expressed in pancreatic islet a-cells and promotes insulin secretion
-
Fujita Y, Wideman RD, Asadi A, et al. Glucose-dependent insulinotropic polypeptide is expressed in pancreatic islet a-cells and promotes insulin secretion. Gastroenterology 2010;138:1966-1975
-
(2010)
Gastroenterology
, vol.138
, pp. 1966-1975
-
-
Fujita, Y.1
Wideman, R.D.2
Asadi, A.3
-
26
-
-
25444520038
-
PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis
-
Seino S, Shibasaki T. PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol Rev 2005;85:1303-1342
-
(2005)
Physiol Rev
, vol.85
, pp. 1303-1342
-
-
Seino, S.1
Shibasaki, T.2
-
27
-
-
79955518020
-
Dual elimination of the glu-cagon and GLP-1 receptors in mice reveals plasticity in the incretin axis
-
Ali S, Lamont BJ, Charron MJ, Drucker DJ. Dual elimination of the glu-cagon and GLP-1 receptors in mice reveals plasticity in the incretin axis. J Clin Invest 2011;121:1917-1929
-
(2011)
J Clin Invest
, vol.121
, pp. 1917-1929
-
-
Ali, S.1
Lamont, B.J.2
Charron, M.J.3
Drucker, D.J.4
-
28
-
-
53149095439
-
Pax6 and Pdx1 are required for production of glucose-dependent insulinotropic polypeptide in proglucagon-expressing L cells
-
Fujita Y, Chui JW, King DS, et al. Pax6 and Pdx1 are required for production of glucose-dependent insulinotropic polypeptide in proglucagon-expressing L cells. Am J Physiol Endocrinol Metab 2008;295:E648-E657
-
(2008)
Am J Physiol Endocrinol Metab
, vol.295
-
-
Fujita, Y.1
Chui, J.W.2
King, D.S.3
-
29
-
-
70649094346
-
Differential importance of glucose-dependent insulinotropic polypeptide vs glucagon-like peptide 1 receptor signaling for beta cell survival in mice
-
Maida A, Hansotia T, Longuet C, Seino Y, Drucker DJ. Differential importance of glucose-dependent insulinotropic polypeptide vs glucagon-like peptide 1 receptor signaling for beta cell survival in mice. Gastroenterol-ogy 2009;137:2146-2157
-
(2009)
Gastroenterol-ogy
, vol.137
, pp. 2146-2157
-
-
Maida, A.1
Hansotia, T.2
Longuet, C.3
Seino, Y.4
Drucker, D.J.5
-
30
-
-
20244385394
-
Double incretin receptor knockout (DIRKO) mice reveal an essential role for the enteroinsular axis in transducing the glucoregulatory actions of DPP-IV inhibitors
-
Hansotia T, Baggio LL, Delmeire D, et al. Double incretin receptor knockout (DIRKO) mice reveal an essential role for the enteroinsular axis in transducing the glucoregulatory actions of DPP-IV inhibitors. Diabetes 2004;53:1326-1335
-
(2004)
Diabetes
, vol.53
, pp. 1326-1335
-
-
Hansotia, T.1
Baggio, L.L.2
Delmeire, D.3
-
31
-
-
80052454734
-
Absence of the glucagon-like peptide-1 receptor does not affect the metabolic phenotype of mice with liver-specific g(s)a deficiency
-
Chen M, Mema E, Kelleher J, et al. Absence of the glucagon-like peptide-1 receptor does not affect the metabolic phenotype of mice with liver-specific G(s)a deficiency. Endocrinology 2011;152:3343-3350
-
(2011)
Endocrinology
, vol.152
, pp. 3343-3350
-
-
Chen, M.1
Mema, E.2
Kelleher, J.3
-
32
-
-
56749171368
-
Regulation of pancreatic b cell mass by neuronal signals from the liver
-
Imai J, Katagiri H, Yamada T, et al. Regulation of pancreatic b cell mass by neuronal signals from the liver. Science 2008;322:1250-1254
-
(2008)
Science
, vol.322
, pp. 1250-1254
-
-
Imai, J.1
Katagiri, H.2
Yamada, T.3
-
33
-
-
84555195140
-
Remodeling of hepatic metabolism and hyperaminoacidemia in mice deficient in proglucagon-derived pep-tides
-
Watanabe C, Seino Y, Miyahira H, et al. Remodeling of hepatic metabolism and hyperaminoacidemia in mice deficient in proglucagon-derived pep-tides. Diabetes 2012;61:74-84
-
(2012)
Diabetes
, vol.61
, pp. 74-84
-
-
Watanabe, C.1
Seino, Y.2
Miyahira, H.3
-
34
-
-
79957641481
-
Polyomic profiling reveals significant hepatic metabolic alterations in glucagon-receptor (GCGR) knockout mice: Implications on anti-glucagon therapies for diabetes
-
Yang J, MacDougall ML, McDowell MT, et al. Polyomic profiling reveals significant hepatic metabolic alterations in glucagon-receptor (GCGR) knockout mice: implications on anti-glucagon therapies for diabetes. BMC Genomics 2011;12:281
-
(2011)
BMC Genomics
, vol.12
, pp. 281
-
-
Yang, J.1
MacDougall, M.L.2
McDowell, M.T.3
-
35
-
-
0017294712
-
Glucagon, insulin and glucose levels in maternal and imbilical cord plasma with studies of placental transfer
-
Spellacy WN, Buhi WC. Glucagon, insulin and glucose levels in maternal and imbilical cord plasma with studies of placental transfer. Obstet Gy-necol 1976;47:291-294
-
(1976)
Obstet Gy-necol
, vol.47
, pp. 291-294
-
-
Spellacy, W.N.1
Buhi, W.C.2
-
36
-
-
79551593329
-
The expression and function of glucose-dependent insulinotropic polypeptide in the embryonic mouse pancreas
-
Prasadan K, Koizumi M, Tulachan S, et al. The expression and function of glucose-dependent insulinotropic polypeptide in the embryonic mouse pancreas. Diabetes 2011;60:548-554
-
(2011)
Diabetes
, vol.60
, pp. 548-554
-
-
Prasadan, K.1
Koizumi, M.2
Tulachan, S.3
|