-
1
-
-
0030219688
-
Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development
-
Li F, Wang X, Capasso JM, Gerdes AM. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol. 1996;28:1737-1746.
-
(1996)
J Mol Cell Cardiol
, vol.28
, pp. 1737-1746
-
-
Li, F.1
Wang, X.2
Capasso, J.M.3
Gerdes, A.M.4
-
2
-
-
79952065525
-
Transient regenerative potential of the neonatal mouse heart
-
Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA. Transient regenerative potential of the neonatal mouse heart. Science. 2011;331:1078-1080.
-
(2011)
Science
, vol.331
, pp. 1078-1080
-
-
Porrello, E.R.1
Mahmoud, A.I.2
Simpson, E.3
Hill, J.A.4
Richardson, J.A.5
Olson, E.N.6
Sadek, H.A.7
-
3
-
-
34548237819
-
Cardiac progenitors and the embryonic cell cycle
-
Goetz SC, Conlon FL. Cardiac progenitors and the embryonic cell cycle. Cell Cycle. 2007;6:1974-1981.
-
(2007)
Cell Cycle
, vol.6
, pp. 1974-1981
-
-
Goetz, S.C.1
Conlon, F.L.2
-
4
-
-
77955861743
-
Foxp1 coordinates cardiomyocyte proliferation through both cell-autonomous and nonautonomous mechanisms
-
Zhang Y, Li S, Yuan L, Tian Y, Weidenfeld J, Yang J, Liu F, Chokas AL, Morrisey EE. Foxp1 coordinates cardiomyocyte proliferation through both cell-autonomous and nonautonomous mechanisms. Genes Dev. 2010;24:1746-1757.
-
(2010)
Genes Dev
, vol.24
, pp. 1746-1757
-
-
Zhang, Y.1
Li, S.2
Yuan, L.3
Tian, Y.4
Weidenfeld, J.5
Yang, J.6
Liu, F.7
Chokas, A.L.8
Morrisey, E.E.9
-
5
-
-
79960310730
-
Expression of Foxm1 transcription factor in cardiomyocytes is required for myocardial development
-
Bolte C, Zhang Y, Wang IC, Kalin TV, Molkentin JD, Kalinichenko VV. Expression of Foxm1 transcription factor in cardiomyocytes is required for myocardial development. PLoS ONE. 2011;6:e22217.
-
(2011)
PLoS ONE
, vol.6
-
-
Bolte, C.1
Zhang, Y.2
Wang, I.C.3
Kalin, T.V.4
Molkentin, J.D.5
Kalinichenko, V.V.6
-
6
-
-
79851492288
-
Multiple faces of FoxM1 transcription factor: Lessons from transgenic mouse models
-
Kalin TV, Ustiyan V, Kalinichenko VV. Multiple faces of FoxM1 transcription factor: lessons from transgenic mouse models. Cell Cycle. 2011;10:396-405.
-
(2011)
Cell Cycle
, vol.10
, pp. 396-405
-
-
Kalin, T.V.1
Ustiyan, V.2
Kalinichenko, V.V.3
-
8
-
-
41449088342
-
Regulation of cardiomyocyte proliferation and myocardial growth during development by FOXO transcription factors
-
Evans-Anderson HJ, Alfieri CM, Yutzey KE. Regulation of cardiomyocyte proliferation and myocardial growth during development by FOXO transcription factors. Circ Res. 2008;102:686-694.
-
(2008)
Circ Res
, vol.102
, pp. 686-694
-
-
Evans-Anderson, H.J.1
Alfieri, C.M.2
Yutzey, K.E.3
-
9
-
-
33748675304
-
Foxo transcription factors blunt cardiac hypertrophy by inhibiting calcineurin signaling
-
Ni YG, Berenji K, Wang N, Oh M, Sachan N, Dey A, Cheng J, Lu G, Morris DJ, Castrillon DH, Gerard RD, Rothermel BA, Hill JA. Foxo transcription factors blunt cardiac hypertrophy by inhibiting calcineurin signaling. Circulation. 2006;114:1159-1168.
-
(2006)
Circulation
, vol.114
, pp. 1159-1168
-
-
Ni, Y.G.1
Berenji, K.2
Wang, N.3
Oh, M.4
Sachan, N.5
Dey, A.6
Cheng, J.7
Lu, G.8
Morris, D.J.9
Castrillon, D.H.10
Gerard, R.D.11
Rothermel, B.A.12
Hill, J.A.13
-
10
-
-
70350500068
-
FoxO transcription factors promote autophagy in cardiomyocytes
-
Sengupta A, Molkentin JD, Yutzey KE. FoxO transcription factors promote autophagy in cardiomyocytes. J Biol Chem. 2009;284: 28319-28331.
-
(2009)
J Biol Chem
, vol.284
, pp. 28319-28331
-
-
Sengupta, A.1
Molkentin, J.D.2
Yutzey, K.E.3
-
11
-
-
79953186624
-
FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress
-
Sengupta A, Molkentin JD, Paik JH, DePinho RA, Yutzey KE. FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress. J Biol Chem. 2011;286:7468-7478.
-
(2011)
J Biol Chem
, vol.286
, pp. 7468-7478
-
-
Sengupta, A.1
Molkentin, J.D.2
Paik, J.H.3
Depinho, R.A.4
Yutzey, K.E.5
-
12
-
-
84863283393
-
Metabolic stress-induced activation of FoxO1 triggers diabetic cardiomyopathy in mice
-
Battiprolu PK, Hojayev B, Jiang N, Wang ZV, Luo X, Iglewski M, Shelton JM, Gerard RD, Rothermel BA, Gillette TG, Lavandero S, Hill JA. Metabolic stress-induced activation of FoxO1 triggers diabetic cardiomyopathy in mice. J Clin Invest. 2012;122:1109-1118.
-
(2012)
J Clin Invest
, vol.122
, pp. 1109-1118
-
-
Battiprolu, P.K.1
Hojayev, B.2
Jiang, N.3
Wang, Z.V.4
Luo, X.5
Iglewski, M.6
Shelton, J.M.7
Gerard, R.D.8
Rothermel, B.A.9
Gillette, T.G.10
Lavandero, S.11
Hill, J.A.12
-
13
-
-
79959962216
-
FOXO and FOXM1 in cancer: The FOXO-FOXM1 axis shapes the outcome of cancer chemotherapy
-
Wilson MS, Brosens JJ, Schwenen HD, Lam EW. FOXO and FOXM1 in cancer: the FOXO-FOXM1 axis shapes the outcome of cancer chemotherapy. Curr Drug Targets. 2011;12:1256-1266.
-
(2011)
Curr Drug Targets
, vol.12
, pp. 1256-1266
-
-
Wilson, M.S.1
Brosens, J.J.2
Schwenen, H.D.3
Lam, E.W.4
-
14
-
-
84860395525
-
FOXO3a represses VEGF expression through FOXM1-dependent and-independent mechanisms in breast cancer
-
Karadedou CT, Gomes AR, Chen J, Petkovic M, Ho KK, Zwolinska AK, Feltes A, Wong SY, Chan KY, Cheung YN, Tsang JW, Brosens JJ, Khoo US, Lam EW. FOXO3a represses VEGF expression through FOXM1-dependent and-independent mechanisms in breast cancer. Oncogene. 2012;31:1845-1858.
-
(2012)
Oncogene
, vol.31
, pp. 1845-1858
-
-
Karadedou, C.T.1
Gomes, A.R.2
Chen, J.3
Petkovic, M.4
Ho, K.K.5
Zwolinska, A.K.6
Feltes, A.7
Wong, S.Y.8
Chan, K.Y.9
Cheung, Y.N.10
Tsang, J.W.11
Brosens, J.J.12
Khoo, U.S.13
Lam, E.W.14
-
15
-
-
1542283812
-
In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker
-
Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell. 2004;15:1101-1111.
-
(2004)
Mol Biol Cell
, vol.15
, pp. 1101-1111
-
-
Mizushima, N.1
Yamamoto, A.2
Matsui, M.3
Yoshimori, T.4
Ohsumi, Y.5
-
16
-
-
34848861463
-
The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor
-
Greer EL, Oskoui PR, Banko MR, Maniar JM, Gygi MP, Gygi SP, Brunet A. The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J Biol Chem. 2007;282:30107-30119.
-
(2007)
J Biol Chem
, vol.282
, pp. 30107-30119
-
-
Greer, E.L.1
Oskoui, P.R.2
Banko, M.R.3
Maniar, J.M.4
Gygi, M.P.5
Gygi, S.P.6
Brunet, A.7
-
17
-
-
0031586353
-
Insulin-like growth factor-1 receptor and its ligand regulate the reentry of adult ventricular myocytes into the cell cycle
-
Reiss K, Cheng W, Pierzchalski P, Kodali S, Li B, Wang S, Liu Y, Anversa P. Insulin-like growth factor-1 receptor and its ligand regulate the reentry of adult ventricular myocytes into the cell cycle. Exp Cell Res. 1997;235:198-209.
-
(1997)
Exp Cell Res
, vol.235
, pp. 198-209
-
-
Reiss, K.1
Cheng, W.2
Pierzchalski, P.3
Kodali, S.4
Li, B.5
Wang, S.6
Liu, Y.7
Anversa, P.8
-
18
-
-
84859902396
-
Growth factors, nutrient signaling, and cardiovascular aging
-
Fontana L, Vinciguerra M, Longo VD. Growth factors, nutrient signaling, and cardiovascular aging. Circ Res. 2012;110:1139-1150.
-
(2012)
Circ Res
, vol.110
, pp. 1139-1150
-
-
Fontana, L.1
Vinciguerra, M.2
Longo, V.D.3
-
19
-
-
34250621799
-
Developmental regulation of the mouse IGF-I exon 1 promoter region by calcineurin activation of NFAT in skeletal muscle
-
Alfieri CM, Evans-Anderson HJ, Yutzey KE. Developmental regulation of the mouse IGF-I exon 1 promoter region by calcineurin activation of NFAT in skeletal muscle. Am J Physiol Cell Physiol. 2007;292:C1887-C1894.
-
(2007)
Am J Physiol Cell Physiol
, vol.292
-
-
Alfieri, C.M.1
Evans-Anderson, H.J.2
Yutzey, K.E.3
-
20
-
-
0037205320
-
Cardiomyocyte cell cycle regulation
-
Pasumarthi KB, Field LJ. Cardiomyocyte cell cycle regulation. Circ Res. 2002;90:1044-1054.
-
(2002)
Circ Res
, vol.90
, pp. 1044-1054
-
-
Pasumarthi, K.B.1
Field, L.J.2
-
21
-
-
0033984235
-
The Ki-67 protein: From the known and the unknown
-
Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol. 2000;182:311-322.
-
(2000)
J Cell Physiol
, vol.182
, pp. 311-322
-
-
Scholzen, T.1
Gerdes, J.2
-
22
-
-
84872840430
-
The forkhead transcription factor Foxo1 (fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression
-
Nakae J, Kitamura T, Silver D, Accili D. The forkhead transcription factor Foxo1 (fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J Clin Invest. 2001;279:1513-1525
-
(2001)
J Clin Invest
, vol.279
, pp. 1513-1525
-
-
Nakae, J.1
Kitamura, T.2
Silver, D.3
Accili, D.4
-
23
-
-
20144368308
-
The FOXO3a transcription factor regulates cardiac myocyte size downstream of AKT signaling
-
Skurk C, Izumiya Y, Maatz H, Razeghi P, Shiojima I, Sandri M, Sato K, Zeng L, Schiekofer S, Pimentel D, Lecker S, Taegtmeyer H, Goldberg AL, Walsh K. The FOXO3a transcription factor regulates cardiac myocyte size downstream of AKT signaling. J Biol Chem. 2005;280:20814-20823.
-
(2005)
J Biol Chem
, vol.280
, pp. 20814-20823
-
-
Skurk, C.1
Izumiya, Y.2
Maatz, H.3
Razeghi, P.4
Shiojima, I.5
Sandri, M.6
Sato, K.7
Zeng, L.8
Schiekofer, S.9
Pimentel, D.10
Lecker, S.11
Taegtmeyer, H.12
Goldberg, A.L.13
Walsh, K.14
-
24
-
-
34247352502
-
Myocardium defects and ventricular hypoplasia in mice homozygous null for the Forkhead Box M1 transcription factor
-
Ramakrishna S, Kim IM, Petrovic V, Malin D, Wang IC, Kalin TV, Meliton L, Zhao YY, Ackerson T, Qin Y, Malik AB, Costa RH, Kalinichenko VV. Myocardium defects and ventricular hypoplasia in mice homozygous null for the Forkhead Box M1 transcription factor. Dev Dyn. 2007;236:1000-1013.
-
(2007)
Dev Dyn
, vol.236
, pp. 1000-1013
-
-
Ramakrishna, S.1
Kim, I.M.2
Petrovic, V.3
Malin, D.4
Wang, I.C.5
Kalin, T.V.6
Meliton, L.7
Zhao, Y.Y.8
Ackerson, T.9
Qin, Y.10
Malik, A.B.11
Costa, R.H.12
Kalinichenko, V.V.13
-
25
-
-
0030786320
-
The winged-helix transcription factor Trident is expressed in cycling cells
-
Korver W, Roose J, Clevers H. The winged-helix transcription factor Trident is expressed in cycling cells. Nucleic Acids Res. 1997;25:1715-1719.
-
(1997)
Nucleic Acids Res
, vol.25
, pp. 1715-1719
-
-
Korver, W.1
Roose, J.2
Clevers, H.3
-
26
-
-
79953156276
-
Knockdown of cyclin-dependent kinase inhibitors induces cardiomyocyte re-entry in the cell cycle
-
Di Stefano V, Giacca M, Capogrossi MC, Crescenzi M, Martelli F. Knockdown of cyclin-dependent kinase inhibitors induces cardiomyocyte re-entry in the cell cycle. J Biol Chem. 2011;286:8644-8654.
-
(2011)
J Biol Chem
, vol.286
, pp. 8644-8654
-
-
Di Stefano, V.1
Giacca, M.2
Capogrossi, M.C.3
Crescenzi, M.4
Martelli, F.5
-
28
-
-
55349089547
-
FoxM1B transcriptionally regulates vascular endothelial growth factor expression and promotes the angiogenesis and growth of glioma cells
-
Zhang Y, Zhang N, Dai B, Liu M, Sawaya R, Xie K, Huang S. FoxM1B transcriptionally regulates vascular endothelial growth factor expression and promotes the angiogenesis and growth of glioma cells. Cancer Res. 2008;68:8733-8742.
-
(2008)
Cancer Res
, vol.68
, pp. 8733-8742
-
-
Zhang, Y.1
Zhang, N.2
Dai, B.3
Liu, M.4
Sawaya, R.5
Xie, K.6
Huang, S.7
-
29
-
-
57149146866
-
Features of cardiomyocyte proliferation and its potential for cardiac regeneration
-
van Amerongen MJ, Engel FB. Features of cardiomyocyte proliferation and its potential for cardiac regeneration. J Cell Mol Med. 2008;12:2233-2244.
-
(2008)
J Cell Mol Med
, vol.12
, pp. 2233-2244
-
-
Van Amerongen, M.J.1
Engel, F.B.2
-
30
-
-
34248593790
-
Cardiac myocyte cell cycle control in development, disease, and regeneration
-
Ahuja P, Sdek P, MacLellan WR. Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol Rev. 2007;87:521-544.
-
(2007)
Physiol Rev
, vol.87
, pp. 521-544
-
-
Ahuja, P.1
Sdek, P.2
MacLellan, W.R.3
-
31
-
-
80054965145
-
Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size
-
Xin M, Kim Y, Sutherland LB, Qi X, McAnally J, Schwartz RJ, Richardson JA, Bassel-Duby R, Olson EN. Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size. Sci Signal. 2011;4:ra70.
-
(2011)
Sci Signal
, vol.4
-
-
Xin, M.1
Kim, Y.2
Sutherland, L.B.3
Qi, X.4
McAnally, J.5
Schwartz, R.J.6
Richardson, J.A.7
Bassel-Duby, R.8
Olson, E.N.9
-
32
-
-
41849108086
-
Many forks in the path: Cycling with FoxO
-
Ho KK, Myatt SS, Lam EW. Many forks in the path: cycling with FoxO. Oncogene. 2008;27:2300-2311.
-
(2008)
Oncogene
, vol.27
, pp. 2300-2311
-
-
Ho, K.K.1
Myatt, S.S.2
Lam, E.W.3
-
33
-
-
33748755657
-
The Forkhead box M1 protein regulates the transcription of the estrogen receptor alpha in breast cancer cells
-
Madureira PA, Varshochi R, Constantinidou D, Francis RE, Coombes RC, Yao KM, Lam EW. The Forkhead box M1 protein regulates the transcription of the estrogen receptor alpha in breast cancer cells. J Biol Chem. 2006;281:25167-25176.
-
(2006)
J Biol Chem
, vol.281
, pp. 25167-25176
-
-
Madureira, P.A.1
Varshochi, R.2
Constantinidou, D.3
Francis, R.E.4
Coombes, R.C.5
Yao, K.M.6
Lam, E.W.7
-
34
-
-
80053035284
-
AMP-activated protein kinase: An energy sensor that regulates all aspects of cell function
-
Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev. 2011;25:1895-1908.
-
(2011)
Genes Dev
, vol.25
, pp. 1895-1908
-
-
Hardie, D.G.1
-
35
-
-
33745213627
-
AMPK and cell proliferation-AMPK as a therapeutic target for atherosclerosis and cancer
-
Motoshima H, Goldstein BJ, Igata M, Araki E. AMPK and cell proliferation-AMPK as a therapeutic target for atherosclerosis and cancer. J Physiol (Lond). 2006;574:63-71.
-
(2006)
J Physiol (Lond)
, vol.574
, pp. 63-71
-
-
Motoshima, H.1
Goldstein, B.J.2
Igata, M.3
Araki, E.4
-
36
-
-
26844527037
-
Adenosine monophosphateactivated protein kinase suppresses vascular smooth muscle cell proliferation through the inhibition of cell cycle progression
-
Igata M, Motoshima H, Tsuruzoe K, Kojima K, Matsumura T, Kondo T, Taguchi T, Nakamaru K, Yano M, Kukidome D, Matsumoto K, Toyonaga T, Asano T, Nishikawa T, Araki E. Adenosine monophosphateactivated protein kinase suppresses vascular smooth muscle cell proliferation through the inhibition of cell cycle progression. Circ Res. 2005;97:837-844.
-
(2005)
Circ Res
, vol.97
, pp. 837-844
-
-
Igata, M.1
Motoshima, H.2
Tsuruzoe, K.3
Kojima, K.4
Matsumura, T.5
Kondo, T.6
Taguchi, T.7
Nakamaru, K.8
Yano, M.9
Kukidome, D.10
Matsumoto, K.11
Toyonaga, T.12
Asano, T.13
Nishikawa, T.14
Araki, E.15
-
37
-
-
61949363051
-
AMP-activated protein kinase deficiency enhances myocardial ischemia/reperfusion injury but has minimal effect on the antioxidant/ antinitrative protection of adiponectin
-
Wang Y, Gao E, Tao L, Lau WB, Yuan Y, Goldstein BJ, Lopez BL, Christopher TA, Tian R, Koch W, Ma XL. AMP-activated protein kinase deficiency enhances myocardial ischemia/reperfusion injury but has minimal effect on the antioxidant/antinitrative protection of adiponectin. Circulation. 2009;119:835-844.
-
(2009)
Circulation
, vol.119
, pp. 835-844
-
-
Wang, Y.1
Gao, E.2
Tao, L.3
Lau, W.B.4
Yuan, Y.5
Goldstein, B.J.6
Lopez, B.L.7
Christopher, T.A.8
Tian, R.9
Koch, W.10
Ma, X.L.11
|