메뉴 건너뛰기




Volumn 17, Issue 2, 2013, Pages 275-284

Memetic Pareto differential evolutionary neural network used to solve an unbalanced liver transplantation problem

Author keywords

Artificial neural networks; Liver transplantation; Multi objective evolutionary algorithm; Organ allocations; Pre processing

Indexed keywords

COMPLEX NETWORKS; DECISION MAKING; EVOLUTIONARY ALGORITHMS; PROCESSING;

EID: 84872820048     PISSN: 14327643     EISSN: 14337479     Source Type: Journal    
DOI: 10.1007/s00500-012-0892-7     Document Type: Article
Times cited : (6)

References (35)
  • 1
    • 0034876065 scopus 로고    scopus 로고
    • PDE: a Pareto-frontier differential evolution approach for multi-objective optimization problems
    • Seoul, South Korea
    • Abbass HA, Sarker R, Newton C (2001) PDE: a Pareto-frontier differential evolution approach for multi-objective optimization problems. In: Proceedings of the 2001 Congress on Evolutionary Computation, Seoul, South Korea, vol 2.
    • (2001) Proceedings of the 2001 Congress on Evolutionary Computation , vol.2
    • Abbass, H.A.1    Sarker, R.2    Newton, C.3
  • 2
    • 79952575200 scopus 로고    scopus 로고
    • Three modified versions of differential evolution algorithm for continuous optimization
    • Ahandani M, Shirjoposh N, Banimahd R (2011) Three modified versions of differential evolution algorithm for continuous optimization. Soft Comput 15(4): 803-830.
    • (2011) Soft Comput , vol.15 , Issue.4 , pp. 803-830
    • Ahandani, M.1    Shirjoposh, N.2    Banimahd, R.3
  • 6
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: a library for support vector machines
    • 27, :27
    • Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2: 27: 1-27: 27.
    • (2011) ACM Trans Intell Syst Technol , vol.2 , pp. 1-27
    • Chang, C.C.1    Lin, C.J.2
  • 9
    • 78650172837 scopus 로고    scopus 로고
    • Memetic pareto differential evolutionary artificial neural networks to determine growth multi-classes in predictive microbiology
    • Cruz-Ramírez M, Sánchez-Monedero J, Fernández-Navarro F, Fernández J, Hervás-Martínez C (2010) Memetic pareto differential evolutionary artificial neural networks to determine growth multi-classes in predictive microbiology. Evol Intell 3(3-4): 187-199.
    • (2010) Evol Intell , vol.3 , Issue.3-4 , pp. 187-199
    • Cruz-Ramírez, M.1    Sánchez-Monedero, J.2    Fernández-Navarro, F.3    Fernández, J.4    Hervás-Martínez, C.5
  • 11
    • 0029995166 scopus 로고    scopus 로고
    • Performance of multi-layer feedforward neural networks to predict liver transplantation outcome
    • Dvorchik I, Subotin M, Marsh W, McMichael J, Fung J (1996) Performance of multi-layer feedforward neural networks to predict liver transplantation outcome. Methods Inf Med 35: 12-18.
    • (1996) Methods Inf Med , vol.35 , pp. 12-18
    • Dvorchik, I.1    Subotin, M.2    Marsh, W.3    McMichael, J.4    Fung, J.5
  • 12
    • 77954661755 scopus 로고    scopus 로고
    • Making decisions on brain tumor diagnosis by soft computing techniques
    • Farias G, Santos M, López V (2010) Making decisions on brain tumor diagnosis by soft computing techniques. Soft Comput 14(12): 1287-1296.
    • (2010) Soft Comput , vol.14 , Issue.12 , pp. 1287-1296
    • Farias, G.1    Santos, M.2    López, V.3
  • 13
    • 70350633267 scopus 로고    scopus 로고
    • Memetic Pareto differential evolution for designing artificial neural networks in multiclassification problems using cross-entropy versus sensitivity
    • Springer, Berlin
    • Fernández JC, Hervás C, Martínez FJ, Gutiérrez PA, Cruz M (2009) Memetic Pareto differential evolution for designing artificial neural networks in multiclassification problems using cross-entropy versus sensitivity. In: Hybrid artificial intelligence systems, vol 5572. Springer, Berlin, pp 433-441.
    • (2009) Hybrid artificial intelligence systems , vol.5572 , pp. 433-441
    • Fernández, J.C.1    Hervás, C.2    Martínez, F.J.3    Gutiérrez, P.A.4    Cruz, M.5
  • 15
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7(7): 179-188.
    • (1936) Ann Eugen , vol.7 , Issue.7 , pp. 179-188
    • Fisher, R.A.1
  • 16
    • 0011270698 scopus 로고    scopus 로고
    • A neural network approach to the biopsy diagnosis of early acute renal transplant rejection
    • Furness P, Levesley J, Luo Z, Taub N, Kazi J, Bates W, Nicholson M (1999) A neural network approach to the biopsy diagnosis of early acute renal transplant rejection. Histopathology 35(5): 461-467.
    • (1999) Histopathology , vol.35 , Issue.5 , pp. 461-467
    • Furness, P.1    Levesley, J.2    Luo, Z.3    Taub, N.4    Kazi, J.5    Bates, W.6    Nicholson, M.7
  • 17
    • 77952880576 scopus 로고    scopus 로고
    • Designing multilayer perceptrons using a guided saw-tooth evolutionary programming algorithm
    • Gutiérrez PA, Hervás C, Lozano M (2010) Designing multilayer perceptrons using a guided saw-tooth evolutionary programming algorithm. Soft Comput 14(6): 599-613.
    • (2010) Soft Comput , vol.14 , Issue.6 , pp. 599-613
    • Gutiérrez, P.A.1    Hervás, C.2    Lozano, M.3
  • 20
    • 7544223741 scopus 로고    scopus 로고
    • A survey of outlier detection methodologies
    • Hodge VJ, Austin J (2004) A survey of outlier detection methodologies. Artif Intell Rev 22: 2004.
    • (2004) Artif Intell Rev , vol.22 , pp. 2004
    • Hodge, V.J.1    Austin, J.2
  • 21
    • 0037238922 scopus 로고    scopus 로고
    • Empirical evaluation of the improved rprop learning algorithms
    • Igel C, Hüsken M (2003) Empirical evaluation of the improved rprop learning algorithms. Neurocomputing 50(6): 105-123.
    • (2003) Neurocomputing , vol.50 , Issue.6 , pp. 105-123
    • Igel, C.1    Hüsken, M.2
  • 22
    • 79960082436 scopus 로고    scopus 로고
    • Clustering of protein expression data: a benchmark of statistical and neural approaches
    • Jarman I, Etchells T, Bacciu D, Garibaldi J, Ellis I, Lisboa P (2011) Clustering of protein expression data: a benchmark of statistical and neural approaches. Soft Comput 15(8): 1459-1469.
    • (2011) Soft Comput , vol.15 , Issue.8 , pp. 1459-1469
    • Jarman, I.1    Etchells, T.2    Bacciu, D.3    Garibaldi, J.4    Ellis, I.5    Lisboa, P.6
  • 23
    • 33750966249 scopus 로고    scopus 로고
    • Evolutionary design and behavior analysis of neuromodulatory neural networks for mobile robots control
    • Kondo T (2007) Evolutionary design and behavior analysis of neuromodulatory neural networks for mobile robots control. Appl Soft Comput 7: 189-202.
    • (2007) Appl Soft Comput , vol.7 , pp. 189-202
    • Kondo, T.1
  • 24
    • 21244500957 scopus 로고    scopus 로고
    • Logistic model trees
    • Landwehr N, Hall M, Frank E (2005) Logistic model trees. Mach Learn 59(1-2): 161-205.
    • (2005) Mach Learn , vol.59 , Issue.1-2 , pp. 161-205
    • Landwehr, N.1    Hall, M.2    Frank, E.3
  • 27
    • 33645823902 scopus 로고    scopus 로고
    • A genetic-algorithm based neural network short-term forecasting framework for database intrusion prediction system
    • Ramasubramanian P, Kannan A (2006) A genetic-algorithm based neural network short-term forecasting framework for database intrusion prediction system. Soft Comput 10(8): 699-714.
    • (2006) Soft Comput , vol.10 , Issue.8 , pp. 699-714
    • Ramasubramanian, P.1    Kannan, A.2
  • 28
    • 0000221271 scopus 로고
    • Product units: a computationally powerful and biologically plausible extension to backpropagation networks
    • Richard D, David ER (1989) Product units: a computationally powerful and biologically plausible extension to backpropagation networks. Neural Comput 1(1): 133-142.
    • (1989) Neural Comput , vol.1 , Issue.1 , pp. 133-142
    • Richard, D.1    David, E.R.2
  • 29
    • 55549147162 scopus 로고    scopus 로고
    • Modifying genetic programming for artificial neural network development for data mining
    • Rivero D, Dorado J, Rabuñal J, Pazos A (2009) Modifying genetic programming for artificial neural network development for data mining. Soft Comput 13(3): 291-305.
    • (2009) Soft Comput , vol.13 , Issue.3 , pp. 291-305
    • Rivero, D.1    Dorado, J.2    Rabuñal, J.3    Pazos, A.4
  • 30
    • 33750962698 scopus 로고    scopus 로고
    • Evolving an artificial neural network classifier for condition monitoring of rotating mechanical systems
    • Saxena A, Saad A (2007) Evolving an artificial neural network classifier for condition monitoring of rotating mechanical systems. Appl Soft Comput 7: 441-454.
    • (2007) Appl Soft Comput , vol.7 , pp. 441-454
    • Saxena, A.1    Saad, A.2
  • 31
    • 0033120319 scopus 로고    scopus 로고
    • Predicting cytomegalovirus disease after renal transplantation: an artificial neural network approach
    • Sheppard D, McPhee D, Darke C, Shrethra B, Moore R, Jurewitz A, Gray A (1999) Predicting cytomegalovirus disease after renal transplantation: an artificial neural network approach. Int J Med Inf 54(1): 55-76.
    • (1999) Int J Med Inf , vol.54 , Issue.1 , pp. 55-76
    • Sheppard, D.1    McPhee, D.2    Darke, C.3    Shrethra, B.4    Moore, R.5    Jurewitz, A.6    Gray, A.7
  • 32
    • 0142000477 scopus 로고    scopus 로고
    • Differential evolution. A fast and efficient heuristic for global optimization over continuous spaces
    • Storn R, Price K (1997) Differential evolution. A fast and efficient heuristic for global optimization over continuous spaces. J Global Optim 11: 341-359.
    • (1997) J Global Optim , vol.11 , pp. 341-359
    • Storn, R.1    Price, K.2
  • 35
    • 63149198435 scopus 로고    scopus 로고
    • Data mining: practical machine learning tools and techniques
    • 2nd edn. Morgan Kaufmann (Elsevier), New York
    • Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques. In: Data management systems, 2nd edn. Morgan Kaufmann (Elsevier), New York.
    • (2005) Data management systems
    • Witten, I.H.1    Frank, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.