메뉴 건너뛰기




Volumn 14, Issue 6, 2010, Pages 599-613

Designing multilayer perceptrons using a guided saw-tooth evolutionary programming algorithm

Author keywords

Artificial neural networks; Evolutionary algorithms; Evolutionary programming; Multilayer perceptrons; Population reinitializations; Saw tooth algorithm

Indexed keywords

ARTIFICIAL NEURAL NETWORK; ARTIFICIAL NEURAL NETWORKS; EVOLUTIONARY PROGRAMMING; MULTI-LAYER PERCEPTRONS; POPULATION REINITIALIZATIONS; SAW-TOOTH;

EID: 77952880576     PISSN: 14327643     EISSN: 14337479     Source Type: Journal    
DOI: 10.1007/s00500-009-0429-x     Document Type: Article
Times cited : (11)

References (63)
  • 2
    • 0028202641 scopus 로고
    • An evolutionary algorithm that constructs recurrent neural networks
    • Angeline PJ, Sauders GM, Pollack JB (1994) An evolutionary algorithm that constructs recurrent neural networks. IEEE Trans Neural Netw 5: 54-65.
    • (1994) IEEE Trans Neural Netw , vol.5 , pp. 54-65
    • Angeline, P.J.1    Sauders, G.M.2    Pollack, J.B.3
  • 6
    • 0026711747 scopus 로고
    • General asymmetric neural networks and structure design by genetic algorithms
    • doi: 10. 1016/S0893-6080(05)80030-9
    • Bornholdt S, Graudenz D (1992) General asymmetric neural networks and structure design by genetic algorithms. Neural Netw 5(2): 327-334. doi: 10. 1016/S0893-6080(05)80030-9.
    • (1992) Neural Netw , vol.5 , Issue.2 , pp. 327-334
    • Bornholdt, S.1    Graudenz, D.2
  • 7
    • 0011210447 scopus 로고
    • Initialization, mutation and selection methods in genetic algorithms for function optimization
    • Belew RK, Booker LB (eds)
    • Bramlette MF (1991) Initialization, mutation and selection methods in genetic algorithms for function optimization. In: Belew RK, Booker LB (eds) Proceedings of the 4th international conference on genetic algorithms (ICGA'91), pp 100-107.
    • (1991) Proceedings of The 4th International Conference On Genetic Algorithms (ICGA'91) , pp. 100-107
    • Bramlette, M.F.1
  • 8
    • 33846063028 scopus 로고    scopus 로고
    • Effects of diversity control in single-objective and multi-objective genetic algorithms
    • Chaiyaratana N, Piroonratana T, Sangkawelert N (2007) Effects of diversity control in single-objective and multi-objective genetic algorithms. J Heuristics 13(1): 1-34.
    • (2007) Journal of Heuristics , vol.13 , Issue.1 , pp. 1-34
    • Chaiyaratana, N.1    Piroonratana, T.2    Sangkawelert, N.3
  • 13
    • 0001334115 scopus 로고    scopus 로고
    • The CHC adaptive search algorithm: How to have safe search when engaging in nontraditional genetic recombination
    • Eshelman LJ (1991) The CHC adaptive search algorithm: How to have safe search when engaging in nontraditional genetic recombination. In: Proceedings of the 1st workshop on foundations on genetic algorithms, pp 257-266.
    • Proceedings of The 1st Workshop On Foundations On Genetic Algorithms , pp. 257-266
    • Eshelman, L.J.1
  • 14
    • 0000283841 scopus 로고
    • Preventing premature convergence in genetic algorithms by preventing incest
    • In: Belew R, Booker L, Morgan Kaufman, San Mateo, CA
    • Eshelman LJ, Schaffer JD (1991) Preventing premature convergence in genetic algorithms by preventing incest. In: Belew R, Booker L (eds) Proceedings of the fourth international conference on genetic algorithms, Morgan Kaufman, San Mateo, CA, pp 115-122.
    • (1991) Proceedings of The Fourth International Conference On Genetic Algorithms , pp. 115-122
    • Eshelman, L.J.1    Schaffer, J.D.2
  • 17
    • 0025107328 scopus 로고
    • Evolving neural networks
    • 10. 1007/BF00199581
    • Fogel DB, Fogel LJ, Porto VW (1990) Evolving neural networks. Biol Cybern 63(6): 487-493. 10. 1007/BF00199581.
    • (1990) Biol Cybern , vol.63 , Issue.6 , pp. 487-493
    • Fogel, D.B.1    Fogel, L.J.2    Porto, V.W.3
  • 21
    • 0000510934 scopus 로고
    • Genetic algorithms, noise, and the sizing of populations
    • Goldberg DE, Deb K, Clark JH (1992) Genetic algorithms, noise, and the sizing of populations. Complex Syst 6(4): 333-362.
    • (1992) Complex Syst , vol.6 , Issue.4 , pp. 333-362
    • Goldberg, D.E.1    Deb, K.2    Clark, J.H.3
  • 24
    • 38449089521 scopus 로고    scopus 로고
    • Saw-tooth algorithm guided by the variance of best individual distributions for designing evolutionary neural networks
    • Springer, Birmingham, Lecture Notes in Computer Science
    • Gutiérrez PA, Hervás-Martínez C, Lozano M (2007) Saw-tooth algorithm guided by the variance of best individual distributions for designing evolutionary neural networks. In: Proceedings of the 8th international conference on intelligent data engineering and automated learning (IDEAL'07), Springer, Birmingham, Lecture Notes in Computer Science, vol 4881, pp 1131-1140.
    • (2007) Proceedings of The 8th International Conference On Intelligent Data Engineering and Automated Learning (IDEAL'07) , vol.4881 , pp. 1131-1140
    • Gutierrez, P.A.1
  • 25
    • 0001917647 scopus 로고    scopus 로고
    • Adaptation of genetic algorithm parameters based on fuzzy logic controllers
    • In: Herrera F, Verdegay JL, Physica-Verlag, Heidelberg
    • Herrera F, Lozano M (1996) Adaptation of genetic algorithm parameters based on fuzzy logic controllers. In: Herrera F, Verdegay JL (eds) Genetic algorithms and soft computing, Physica-Verlag, Heidelberg, pp 95-125.
    • (1996) Genetic Algorithms and Soft Computing , pp. 95-125
    • Herrera, F.1    Lozano, M.2
  • 26
    • 0030402693 scopus 로고    scopus 로고
    • Dynamic and heuristic fuzzy connectives-based crossover operators for controlling the diversity and convergence of real-coded genetic algorithms
    • Herrera F, Lozano M, Verdegay JL (1996) Dynamic and heuristic fuzzy connectives-based crossover operators for controlling the diversity and convergence of real-coded genetic algorithms. Int J Intell Syst 11(12): 1013-1040.
    • (1996) Int J Intell Syst , vol.11 , Issue.12 , pp. 1013-1040
    • Herrera, F.1    Lozano, M.2    Verdegay, J.L.3
  • 28
    • 33749866321 scopus 로고    scopus 로고
    • Fitness uniform optimization
    • Hutter M, Legg S (2006) Fitness uniform optimization. IEEE Trans Evol Comput 10(5): 568-589.
    • (2006) IEEE Trans Evol Comput , vol.10 , Issue.5 , pp. 568-589
    • Hutter, M.1    Legg, S.2
  • 30
    • 31744436874 scopus 로고    scopus 로고
    • A saw-tooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance
    • Koumousis VK, Katsaras CP (2006) A saw-tooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance. IEEE Trans Evol Comput 10(1): 19-28.
    • (2006) IEEE Trans Evol Comput , vol.10 , Issue.1 , pp. 19-28
    • Koumousis, V.K.1    Katsaras, C.P.2
  • 32
    • 21244500957 scopus 로고    scopus 로고
    • Logistic model trees
    • Landwehr N, Hall M, Frank E (2005) Logistic model trees. Mach Learn 59(1-2): 161-205.
    • (2005) Mach Learn , vol.59 , Issue.1-2 , pp. 161-205
    • Landwehr, N.1    Hall, M.2    Frank, E.3
  • 33
    • 0037276988 scopus 로고    scopus 로고
    • Tuning of the structure and parameters of a neural network using an improved genetic algorithm
    • doi: 10. 1109/TNN. 2002. 804317
    • Leung FHF, Lam HK, Ling SH, Tam PKS (2003) Tuning of the structure and parameters of a neural network using an improved genetic algorithm. IEEE Trans Neural Netw 14(1): 79-88. doi: 10. 1109/TNN. 2002. 804317.
    • (2003) IEEE Trans Neural Netw , vol.14 , Issue.1 , pp. 79-88
    • Leung, F.H.F.1    Lam, H.K.2    Ling, S.H.3    Tam, P.K.S.4
  • 34
    • 0003139708 scopus 로고
    • Essays in Honor of Harold Hotelling
    • Stanford University Press, London
    • Levene H (1960) Essays in Honor of Harold Hotelling. In: Contributions to probability and statistics. Stanford University Press, London.
    • (1960) Contributions to Probability and Statistics
    • Levene, H.1
  • 35
    • 52949139054 scopus 로고    scopus 로고
    • Replacement strategies to preserve useful diversity in steady-state genetic algorithms
    • Lozano M, Herrera F, Cano JR (2008) Replacement strategies to preserve useful diversity in steady-state genetic algorithms. Inf Sci 178(23): 4421-4433.
    • (2008) Inf Sci , vol.178 , Issue.23 , pp. 4421-4433
    • Lozano, M.1    Herrera, F.2    Cano, J.R.3
  • 36
    • 0002614135 scopus 로고
    • Crowding and preselection revisited
    • In: Männer R, Manderick B, North-Holland, Amsterdam
    • Mahfoud SW (1992) Crowding and preselection revisited. In: Männer R, Manderick B (eds) Parallel problem solving from nature 2, North-Holland, Amsterdam, pp 27-36.
    • (1992) Parallel Problem Solving From Nature 2 , pp. 27-36
    • Mahfoud, S.W.1
  • 43
    • 0004002183 scopus 로고    scopus 로고
    • The shifting balance genetic algorithm: Improving the GA in a dynamic environment
    • Morgan Kaufmann, San Francisco
    • Oppacher F, Wineberg M (1999) The shifting balance genetic algorithm: improving the GA in a dynamic environment. In: Proceedings of the genetic and evolutionary computation conference, Morgan Kaufmann, San Francisco, vol 1, pp 504-510.
    • (1999) Proceedings of The Genetic and Evolutionary Computation Conference , vol.1 , pp. 504-510
    • Oppacher, F.1    Wineberg, M.2
  • 46
    • 0347858792 scopus 로고
    • An analysis of genetic algorithms using statistical mechanics
    • Prügel-Bennett A, Shapiro JL (1994) An analysis of genetic algorithms using statistical mechanics. Phys Rev Lett 72(9): 1305-1309.
    • (1994) Phys Rev Lett , vol.72 , Issue.9 , pp. 1305-1309
    • Prügel-Bennett, A.1    Shapiro, J.L.2
  • 47
    • 0002375286 scopus 로고    scopus 로고
    • The dynamics of a genetic algorithm for simple Ising systems
    • Prügel-Bennett A, Shapiro JL (1997) The dynamics of a genetic algorithm for simple Ising systems. Physica D 104: 75-114.
    • (1997) Physica D , vol.104 , pp. 75-114
    • Prügel-Bennett, A.1    Shapiro, J.L.2
  • 50
    • 0033337397 scopus 로고    scopus 로고
    • Genetic drift in genetic algorithm selection schemes
    • Rogers A, Pruegel-Bennett A (1999) Genetic drift in genetic algorithm selection schemes. IEEE Trans Evol Comput 3(4): 298.
    • (1999) IEEE Trans Evol Comput , vol.3 , Issue.4 , pp. 298
    • Rogers, A.1    Pruegel-Bennett, A.2
  • 51
    • 0034863740 scopus 로고    scopus 로고
    • A diversity-control-oriented genetic algorithm DCGA: Performance in function optimization
    • doi: 10. 1109/CEC. 2001. 934369
    • Shimodaira H (2001) A diversity-control-oriented genetic algorithm DCGA: performance in function optimization. In: Proceedings of the 2001 congress on evolutionary computation, 2001, vol 1, pp 44-51. doi: 10. 1109/CEC. 2001. 934369.
    • (2001) Proceedings of The 2001 Congress On Evolutionary Computation, 2001 , vol.1 , pp. 44-51
    • Shimodaira, H.1
  • 54
    • 33144466864 scopus 로고    scopus 로고
    • Tuning the structure and parameters of a neural network by using hybrid taguchi-genetic algorithm
    • Tsai JT, Chou JH, Liu TK (2006) Tuning the structure and parameters of a neural network by using hybrid taguchi-genetic algorithm. IEEE Trans Neural Netw 17(1): 69-80.
    • (2006) IEEE Trans Neural Netw , vol.17 , Issue.1 , pp. 69-80
    • Tsai, J.T.1    Chou, J.H.2    Liu, T.K.3
  • 55
    • 0031082417 scopus 로고    scopus 로고
    • Forking genetic algorithms: GAs with search space division schemes
    • Tsutsui S, Fujimoto Y, Ghosh A (1997) Forking genetic algorithms: GAs with search space division schemes. Evol Comput 5(1): 61-80.
    • (1997) Evol Comput , vol.5 , Issue.1 , pp. 61-80
    • Tsutsui, S.1    Fujimoto, Y.2    Ghosh, A.3
  • 59
    • 0003389370 scopus 로고
    • The GENITOR algorithm and selection pressure: Why rank-based allocation of reproductive trials is best
    • In: Schaffer JD, Morgan Kaufman, San Mateo, CA
    • Whitley D (1989) The GENITOR algorithm and selection pressure: why rank-based allocation of reproductive trials is best. In: Schaffer JD (ed) Proceedings of the third international conference on genetic algorithms, Morgan Kaufman, San Mateo, CA.
    • (1989) Proceedings of The Third International Conference On Genetic Algorithms
    • Whitley, D.1
  • 60
  • 62
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • Yao X (1999) Evolving artificial neural networks. Proc IEEE 87(9): 1423-1447.
    • (1999) Proc IEEE , vol.87 , Issue.9 , pp. 1423-1447
    • Yao, X.1
  • 63
    • 0031143030 scopus 로고    scopus 로고
    • A new evolutionary system for evolving artificial neural networks
    • Yao X, Liu Y (1997) A new evolutionary system for evolving artificial neural networks. IEEE Trans Neural Netw 8(3): 694-713.
    • (1997) IEEE Trans Neural Netw , vol.8 , Issue.3 , pp. 694-713
    • Yao, X.1    Liu, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.