메뉴 건너뛰기




Volumn 12, Issue 1, 2013, Pages 13-24

Genomic analysis reveals novel connections between alternative splicing and circadian regulatory networks

Author keywords

Alternative splicing; Arabidopsis thaliana; Circadian rhythms; Gene expression networks

Indexed keywords

GLYCINE RICH PROTEIN 7; MESSENGER RNA; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR; RNA BINDING PROTEIN; TRANSCRIPTION FACTOR CLOCK; TRANSCRIPTOME; UNCLASSIFIED DRUG;

EID: 84872815534     PISSN: 20412649     EISSN: 20412657     Source Type: Journal    
DOI: 10.1093/bfgp/els052     Document Type: Article
Times cited : (17)

References (87)
  • 1
    • 80053027909 scopus 로고    scopus 로고
    • Functional consequences of developmentally regulated alternative splicing
    • Kalsotra A, Cooper TA. Functional consequences of developmentally regulated alternative splicing. Nat Rev Genet 2011;12:715-29.
    • (2011) Nat Rev Genet , vol.12 , pp. 715-729
    • Kalsotra, A.1    Cooper, T.A.2
  • 2
    • 33745899048 scopus 로고    scopus 로고
    • Alternative splicing: new insights from global analyses
    • Blencowe BJ. Alternative splicing: new insights from global analyses. Cell 2006;126:37-47.
    • (2006) Cell , vol.126 , pp. 37-47
    • Blencowe, B.J.1
  • 3
    • 84859293997 scopus 로고    scopus 로고
    • Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis
    • Kalyna M, Simpson CG, Syed NH, et al. Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis. Nucleic Acids Res 2012;40:2454-69.
    • (2012) Nucleic Acids Res , vol.40 , pp. 2454-2469
    • Kalyna, M.1    Simpson, C.G.2    Syed, N.H.3
  • 4
    • 0037422575 scopus 로고    scopus 로고
    • Evidence for the widespread coupling of alternative splicing and nonsensemediated mRNA decay in humans
    • Lewis BP, Green RE, Brenner SE. Evidence for the widespread coupling of alternative splicing and nonsensemediated mRNA decay in humans. Proc Natl Acad Sci USA 2003;100:189-92.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 189-192
    • Lewis, B.P.1    Green, R.E.2    Brenner, S.E.3
  • 5
    • 77953764202 scopus 로고    scopus 로고
    • Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation
    • Salomonis N, Schlieve CR, Pereira L, et al. Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation. Proc Natl Acad Sci USA 2010;107:10514-9.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 10514-10519
    • Salomonis, N.1    Schlieve, C.R.2    Pereira, L.3
  • 6
    • 75849145292 scopus 로고    scopus 로고
    • Expansion of the eukaryotic proteome by alternative splicing
    • Nilsen TW, Graveley BR. Expansion of the eukaryotic proteome by alternative splicing. Nature 2010;463:457-63.
    • (2010) Nature , vol.463 , pp. 457-463
    • Nilsen, T.W.1    Graveley, B.R.2
  • 7
    • 12344250822 scopus 로고    scopus 로고
    • Function of alternative splicing
    • Stamm S, Ben-Ari S, Rafalska I, et al. Function of alternative splicing. Gene 2005;344:1-20.
    • (2005) Gene , vol.344 , pp. 1-20
    • Stamm, S.1    Ben-Ari, S.2    Rafalska, I.3
  • 8
    • 84861961269 scopus 로고    scopus 로고
    • Alternative splicing: decoding an expansive regulatory layer
    • Irimia M, Blencowe BJ. Alternative splicing: decoding an expansive regulatory layer. Curr Opin Cell Biol 2012;24:323-32.
    • (2012) Curr Opin Cell Biol , vol.24 , pp. 323-332
    • Irimia, M.1    Blencowe, B.J.2
  • 9
    • 56749098074 scopus 로고    scopus 로고
    • Deep surveying of alternative splicing complexity in the human transcriptome by highthroughput sequencing
    • Pan Q, Shai O, Lee LJ, et al. Deep surveying of alternative splicing complexity in the human transcriptome by highthroughput sequencing. Nat Genet 2008;40:1413-5.
    • (2008) Nat Genet , vol.40 , pp. 1413-1415
    • Pan, Q.1    Shai, O.2    Lee, L.J.3
  • 10
    • 56549101959 scopus 로고    scopus 로고
    • Alternative isoform regulation in human tissue transcriptomes
    • Wang ET, Sandberg R, Luo S, et al. Alternative isoform regulation in human tissue transcriptomes. Nature 2008; 456:470-6.
    • (2008) Nature , vol.456 , pp. 470-476
    • Wang, E.T.1    Sandberg, R.2    Luo, S.3
  • 11
    • 74949084336 scopus 로고    scopus 로고
    • Genome-wide mapping of alternative splicing in Arabidopsis thaliana
    • Filichkin SA, Priest HD, Givan SA, et al. Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res 2010;20:45-58.
    • (2010) Genome Res , vol.20 , pp. 45-58
    • Filichkin, S.A.1    Priest, H.D.2    Givan, S.A.3
  • 12
    • 84861890038 scopus 로고    scopus 로고
    • Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis
    • Marquez Y, Brown JW, Simpson C, et al. Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res 2012;22:1184-95.
    • (2012) Genome Res , vol.22 , pp. 1184-1195
    • Marquez, Y.1    Brown, J.W.2    Simpson, C.3
  • 14
    • 80053318065 scopus 로고    scopus 로고
    • RNA-based regulation in the plant circadian clock
    • Staiger D, Green R. RNA-based regulation in the plant circadian clock. Trends Plant Sci 2011;16:517-23.
    • (2011) Trends Plant Sci , vol.16 , pp. 517-523
    • Staiger, D.1    Green, R.2
  • 15
    • 79551506940 scopus 로고    scopus 로고
    • Post-transcriptional control of circadian rhythms
    • Kojima S, Shingle DL, Green CB. Post-transcriptional control of circadian rhythms. JCell Sci 2011;124:311-20.
    • (2011) J Cell Sci , vol.124 , pp. 311-320
    • Kojima, S.1    Shingle, D.L.2    Green, C.B.3
  • 16
    • 0035458732 scopus 로고    scopus 로고
    • Time zones: a comparative genetics of circadian clocks
    • Young MW, Kay SA. Time zones: a comparative genetics of circadian clocks. Nat RevGenet 2001;2:702-15.
    • (2001) Nat Rev Genet , vol.2 , pp. 702-715
    • Young, M.W.1    Kay, S.A.2
  • 17
    • 65949094583 scopus 로고    scopus 로고
    • The implications of multiple circadian clock origins
    • Rosbash M. The implications of multiple circadian clock origins. PLoS Biol 2009;7:e62.
    • (2009) PLoS Biol , vol.7
    • Rosbash, M.1
  • 18
    • 0035800467 scopus 로고    scopus 로고
    • Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock
    • Alabadi D, Oyama T, Yanovsky MJ, et al. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 2001;293:880-3.
    • (2001) Science , vol.293 , pp. 880-883
    • Alabadi, D.1    Oyama, T.2    Yanovsky, M.J.3
  • 19
    • 11844289579 scopus 로고    scopus 로고
    • Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock
    • Farre EM, Harmer SL, Harmon FG, et al. Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr Biol 2005;15:47-54.
    • (2005) Curr Biol , vol.15 , pp. 47-54
    • Farre, E.M.1    Harmer, S.L.2    Harmon, F.G.3
  • 20
    • 20444398523 scopus 로고    scopus 로고
    • PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana
    • Nakamichi N, Kita M, Ito S, et al. PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana. Plant Cell Physiol 2005;46:686-98.
    • (2005) Plant Cell Physiol , vol.46 , pp. 686-698
    • Nakamichi, N.1    Kita, M.2    Ito, S.3
  • 21
    • 84859508042 scopus 로고    scopus 로고
    • Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator
    • Huang W, Perez-Garcia P, Pokhilko A, et al. Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator. Science 2012;336:75-9.
    • (2012) Science , vol.336 , pp. 75-79
    • Huang, W.1    Perez-Garcia, P.2    Pokhilko, A.3
  • 22
    • 84857952188 scopus 로고    scopus 로고
    • The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops
    • Pokhilko A, Fernandez AP, Edwards KD, et al. The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops. Mol Syst Biol 2012;8:574.
    • (2012) Mol Syst Biol , vol.8 , pp. 574
    • Pokhilko, A.1    Fernandez, A.P.2    Edwards, K.D.3
  • 23
    • 84857383458 scopus 로고    scopus 로고
    • Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor
    • Gendron JM, Pruneda-Paz JL, Doherty CJ, et al. Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proc Natl Acad Sci USA 2012;109: 3167-72.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 3167-3172
    • Gendron, J.M.1    Pruneda-Paz, J.L.2    Doherty, C.J.3
  • 24
    • 79953730633 scopus 로고    scopus 로고
    • REVEILLE8 and PSEUDO-REPONSE REGULATOR5 form a negative feedback loop within the Arabidopsis circadian clock
    • Rawat R, Takahashi N, Hsu PY, et al. REVEILLE8 and PSEUDO-REPONSE REGULATOR5 form a negative feedback loop within the Arabidopsis circadian clock. PLoS Genet 2011;7:e1001350.
    • (2011) PLoS Genet , vol.7
    • Rawat, R.1    Takahashi, N.2    Hsu, P.Y.3
  • 25
    • 70349741081 scopus 로고    scopus 로고
    • REVEILLE1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways
    • Rawat R, Schwartz J, Jones MA, et al. REVEILLE1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways. Proc Natl Acad Sci USA 2009; 106:16883-8.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 16883-16888
    • Rawat, R.1    Schwartz, J.2    Jones, M.A.3
  • 26
    • 79955007772 scopus 로고    scopus 로고
    • Functional implication of the MYB transcription factor RVE8/LCL5 in the circadian control of histone acetylation
    • Farinas B, Mas P. Functional implication of the MYB transcription factor RVE8/LCL5 in the circadian control of histone acetylation. Plant J 2011;66:318-29.
    • (2011) Plant J , vol.66 , pp. 318-329
    • Farinas, B.1    Mas, P.2
  • 27
    • 79960621365 scopus 로고    scopus 로고
    • The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth
    • Nusinow DA, Helfer A, Hamilton EE, et al. The ELF4- ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 2011;475:398-402.
    • (2011) Nature , vol.475 , pp. 398-402
    • Nusinow, D.A.1    Helfer, A.2    Hamilton, E.E.3
  • 28
    • 79151483227 scopus 로고    scopus 로고
    • LUX ARRHYTHMO encodes a nighttime repressor of circadian gene expression in the Arabidopsis core clock
    • Helfer A, Nusinow DA, Chow BY, et al. LUX ARRHYTHMO encodes a nighttime repressor of circadian gene expression in the Arabidopsis core clock. Curr Biol 2011;21:126-33.
    • (2011) Curr Biol , vol.21 , pp. 126-133
    • Helfer, A.1    Nusinow, D.A.2    Chow, B.Y.3
  • 29
    • 79151483729 scopus 로고    scopus 로고
    • Temporal repression of core circadian genes is mediated through EARLY FLOWERING 3 in Arabidopsis
    • Dixon LE, Knox K, Kozma-Bognar L, et al. Temporal repression of core circadian genes is mediated through EARLY FLOWERING 3 in Arabidopsis. Curr Biol 2011; 21:120-5.
    • (2011) Curr Biol , vol.21 , pp. 120-125
    • Dixon, L.E.1    Knox, K.2    Kozma-Bognar, L.3
  • 30
    • 84859043500 scopus 로고    scopus 로고
    • EARLY FLOWERING4 recruitment of EARLY FLOWERING3 in the nucleus sustains the Arabidopsis circadian clock
    • Herrero E, Kolmos E, Bujdoso N, et al. EARLY FLOWERING4 recruitment of EARLY FLOWERING3 in the nucleus sustains the Arabidopsis circadian clock. Plant Cell 2012;24:428-43.
    • (2012) Plant Cell , vol.24 , pp. 428-443
    • Herrero, E.1    Kolmos, E.2    Bujdoso, N.3
  • 31
    • 84865571932 scopus 로고    scopus 로고
    • Speed control: cogs and gears that drive the circadian clock
    • Zheng X, Sehgal A. Speed control: cogs and gears that drive the circadian clock. Trends Neurosci 2012;35:574-85.
    • (2012) Trends Neurosci , vol.35 , pp. 574-585
    • Zheng, X.1    Sehgal, A.2
  • 32
    • 84860299312 scopus 로고    scopus 로고
    • Timing to perfection: the biology of central and peripheral circadian clocks
    • Albrecht U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron 2012;74:246-60.
    • (2012) Neuron , vol.74 , pp. 246-260
    • Albrecht, U.1
  • 34
    • 17244373578 scopus 로고    scopus 로고
    • Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro
    • Nakajima M, Imai K, Ito H, et al. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 2005;308:414-5.
    • (2005) Science , vol.308 , pp. 414-415
    • Nakajima, M.1    Imai, K.2    Ito, H.3
  • 35
    • 12244296161 scopus 로고    scopus 로고
    • No transcriptiontranslation feedback in circadian rhythm of KaiC phosphorylation
    • Tomita J, Nakajima M, Kondo T, et al. No transcriptiontranslation feedback in circadian rhythm of KaiC phosphorylation. Science 2005;307:251-4.
    • (2005) Science , vol.307 , pp. 251-254
    • Tomita, J.1    Nakajima, M.2    Kondo, T.3
  • 36
    • 84861452257 scopus 로고    scopus 로고
    • Peroxiredoxins are conserved markers of circadian rhythms
    • Edgar RS, Green EW, Zhao Y, et al. Peroxiredoxins are conserved markers of circadian rhythms. Nature 2012;485: 459-64.
    • (2012) Nature , vol.485 , pp. 459-464
    • Edgar, R.S.1    Green, E.W.2    Zhao, Y.3
  • 37
    • 79251539603 scopus 로고    scopus 로고
    • Circadian rhythms persist without transcription in a eukaryote
    • O'Neill JS, van Ooijen G, Dixon LE, et al. Circadian rhythms persist without transcription in a eukaryote. Nature 2011;469:554-8.
    • (2011) Nature , vol.469 , pp. 554-558
    • O'Neill, J.S.1    van Ooijen, G.2    Dixon, L.E.3
  • 38
    • 79251566511 scopus 로고    scopus 로고
    • Circadian clocks in human red blood cells
    • O'Neill JS, Reddy AB. Circadian clocks in human red blood cells. Nature 2011;469:498-503.
    • (2011) Nature , vol.469 , pp. 498-503
    • O'Neill, J.S.1    Reddy, A.B.2
  • 39
    • 84858172824 scopus 로고    scopus 로고
    • (Re)inventing the circadian feedback loop
    • Brown SA, Kowalska E, Dallmann R. (Re)inventing the circadian feedback loop. Dev Cell 2012;22:477-487.
    • (2012) Dev Cell , vol.22 , pp. 477-487
    • Brown, S.A.1    Kowalska, E.2    Dallmann, R.3
  • 40
    • 33847779219 scopus 로고    scopus 로고
    • Post-translational modifications regulate the ticking of the circadian clock
    • Gallego M, Virshup DM. Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol 2007;8:139-48.
    • (2007) Nat Rev Mol Cell Biol , vol.8 , pp. 139-148
    • Gallego, M.1    Virshup, D.M.2
  • 41
    • 84861700013 scopus 로고    scopus 로고
    • The interactions between the circadian clock and primary metabolism
    • Farre EM, Weise SE. The interactions between the circadian clock and primary metabolism. Curr Opin Plant Biol 2012;15:293-300.
    • (2012) Curr Opin Plant Biol , vol.15 , pp. 293-300
    • Farre, E.M.1    Weise, S.E.2
  • 42
    • 78649687209 scopus 로고    scopus 로고
    • Circadian integration of metabolism and energetics
    • Bass J, Takahashi JS. Circadian integration of metabolism and energetics. Science 2010;330:1349-54.
    • (2010) Science , vol.330 , pp. 1349-1354
    • Bass, J.1    Takahashi, J.S.2
  • 43
    • 66149109671 scopus 로고    scopus 로고
    • Metabolism control by the circadian clock and vice versa
    • Eckel-Mahan K, Sassone-Corsi P. Metabolism control by the circadian clock and vice versa. Nat StructMol Biol 2009; 16:462-7.
    • (2009) Nat Struct Mol Biol , vol.16 , pp. 462-467
    • Eckel-Mahan, K.1    Sassone-Corsi, P.2
  • 44
    • 78650995766 scopus 로고    scopus 로고
    • Spotlight on post-transcriptional control in the circadian system
    • Staiger D, Koster T. Spotlight on post-transcriptional control in the circadian system. Cell Mol Life Sci 2011;68:71-83.
    • (2011) Cell Mol Life Sci , vol.68 , pp. 71-83
    • Staiger, D.1    Koster, T.2
  • 45
    • 79955906744 scopus 로고    scopus 로고
    • Posttranscriptional mechanisms in controlling eukaryotic circadian rhythms
    • Zhang L, Weng W, Guo J. Posttranscriptional mechanisms in controlling eukaryotic circadian rhythms. FEBS Lett 2011;585:1400-5.
    • (2011) FEBS Lett , vol.585 , pp. 1400-1405
    • Zhang, L.1    Weng, W.2    Guo, J.3
  • 46
    • 0023222290 scopus 로고
    • A family of unusually spliced biologically active transcripts encoded by a Drosophila clock gene
    • Citri Y, Colot HV, Jacquier AC, et al. A family of unusually spliced biologically active transcripts encoded by a Drosophila clock gene. Nature 1987;326:42-7.
    • (1987) Nature , vol.326 , pp. 42-47
    • Citri, Y.1    Colot, H.V.2    Jacquier, A.C.3
  • 47
    • 0031740338 scopus 로고    scopus 로고
    • Two alternatively spliced transcripts from the Drosophila period gene rescue rhythms having different molecular and behavioral characteristics
    • Cheng Y, Gvakharia B, Hardin PE. Two alternatively spliced transcripts from the Drosophila period gene rescue rhythms having different molecular and behavioral characteristics. Mol Cell Biol 1998;18:6505-14.
    • (1998) Mol Cell Biol , vol.18 , pp. 6505-6514
    • Cheng, Y.1    Gvakharia, B.2    Hardin, P.E.3
  • 48
    • 28644441707 scopus 로고    scopus 로고
    • Temperature-modulated alternative splicing and promoter use in the Circadian clock gene frequency
    • Colot HV, Loros JJ, Dunlap JC. Temperature-modulated alternative splicing and promoter use in the Circadian clock gene frequency. Mol Biol Cell 2005;16:5563-71.
    • (2005) Mol Biol Cell , vol.16 , pp. 5563-5571
    • Colot, H.V.1    Loros, J.J.2    Dunlap, J.C.3
  • 49
    • 24344437155 scopus 로고    scopus 로고
    • Molecular mechanism of temperature sensing by the circadian clock of Neurospora crassa
    • Diernfellner AC, Schafmeier T, Merrow MW, et al. Molecular mechanism of temperature sensing by the circadian clock of Neurospora crassa. Genes Dev 2005;19:1968-73.
    • (2005) Genes Dev , vol.19 , pp. 1968-1973
    • Diernfellner, A.C.1    Schafmeier, T.2    Merrow, M.W.3
  • 50
    • 78149282260 scopus 로고    scopus 로고
    • A methyl transferase links the circadian clock to the regulation of alternative splicing
    • Sanchez SE, Petrillo E, Beckwith EJ, et al. A methyl transferase links the circadian clock to the regulation of alternative splicing. Nature 2010;468:112-6.
    • (2010) Nature , vol.468 , pp. 112-116
    • Sanchez, S.E.1    Petrillo, E.2    Beckwith, E.J.3
  • 51
    • 84860128193 scopus 로고    scopus 로고
    • Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes
    • James AB, Syed NH, Bordage S, et al. Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes. Plant Cell 2012;24:961-81.
    • (2012) Plant Cell , vol.24 , pp. 961-981
    • James, A.B.1    Syed, N.H.2    Bordage, S.3
  • 52
    • 84863089087 scopus 로고    scopus 로고
    • Unproductive alternative splicing and nonsense mRNAs: a widespread phenomenon among plant circadian clock genes
    • Filichkin SA, Mockler TC. Unproductive alternative splicing and nonsense mRNAs: a widespread phenomenon among plant circadian clock genes. Biol Direct 2012;7:20.
    • (2012) Biol Direct , vol.7 , pp. 20
    • Filichkin, S.A.1    Mockler, T.C.2
  • 53
    • 0033199242 scopus 로고    scopus 로고
    • How a circadian clock adapts to seasonal decreases in temperature and day length
    • Majercak J, Sidote D, Hardin PE, et al. How a circadian clock adapts to seasonal decreases in temperature and day length. Neuron 1999;24:219-230.
    • (1999) Neuron , vol.24 , pp. 219-230
    • Majercak, J.1    Sidote, D.2    Hardin, P.E.3
  • 54
    • 1242319314 scopus 로고    scopus 로고
    • Seasonal behavior in Drosophila melanogaster requires the photoreceptors, the circadian clock, and phospholipase C
    • Collins BH, Rosato E, Kyriacou CP. Seasonal behavior in Drosophila melanogaster requires the photoreceptors, the circadian clock, and phospholipase C. Proc Natl Acad Sci USA 2004;101:1945-50.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 1945-1950
    • Collins, B.H.1    Rosato, E.2    Kyriacou, C.P.3
  • 55
    • 1842505320 scopus 로고    scopus 로고
    • Splicing of the period gene 30-terminal intron is regulated by light, circadian clock factors, and phospholipase C
    • Majercak J, Chen WF, Edery I. Splicing of the period gene 30-terminal intron is regulated by light, circadian clock factors, and phospholipase C. Mol Cell Biol 2004;24:3359-72.
    • (2004) Mol Cell Biol , vol.24 , pp. 3359-3372
    • Majercak, J.1    Chen, W.F.2    Edery, I.3
  • 56
    • 48249111732 scopus 로고    scopus 로고
    • Thermosensitive splicing of a clock gene and seasonal adaptation
    • Chen WF, Low KH, Lim C, et al. Thermosensitive splicing of a clock gene and seasonal adaptation. Cold Spring Harb Symp Quant Biol 2007;72:599-606.
    • (2007) Cold Spring Harb Symp Quant Biol , vol.72 , pp. 599-606
    • Chen, W.F.1    Low, K.H.2    Lim, C.3
  • 57
    • 57649200130 scopus 로고    scopus 로고
    • Natural variation in the splice site strength of a clock gene and species-specific thermal adaptation
    • Low KH, Lim C, Ko HW, et al. Natural variation in the splice site strength of a clock gene and species-specific thermal adaptation. Neuron 2008;60:1054-67.
    • (2008) Neuron , vol.60 , pp. 1054-1067
    • Low, K.H.1    Lim, C.2    Ko, H.W.3
  • 58
    • 36849002853 scopus 로고    scopus 로고
    • Long and short isoforms of Neurospora clock protein FRQ support temperature-compensated circadian rhythms
    • Diernfellner A, Colot HV, Dintsis O, et al. Long and short isoforms of Neurospora clock protein FRQ support temperature-compensated circadian rhythms. FEBS Lett 2007;581:5759-5764.
    • (2007) FEBS Lett , vol.581 , pp. 5759-5764
    • Diernfellner, A.1    Colot, H.V.2    Dintsis, O.3
  • 59
    • 84867026807 scopus 로고    scopus 로고
    • SKIP is a component of the spliceosome linking alternative splicing and the circadian clock in Arabidopsis
    • Wang X, Wu F, Xie Q, et al. SKIP is a component of the spliceosome linking alternative splicing and the circadian clock in Arabidopsis. Plant Cell 2012;24:3278-95.
    • (2012) Plant Cell , vol.24 , pp. 3278-3295
    • Wang, X.1    Wu, F.2    Xie, Q.3
  • 60
    • 84864440018 scopus 로고    scopus 로고
    • A self-regulatory circuit of CIRCADIAN CLOCK-ASSOCIATED1 underlies the circadian clock regulation of temperature responses in Arabidopsis
    • Seo PJ, Park MJ, Lim MH, et al. A self-regulatory circuit of CIRCADIAN CLOCK-ASSOCIATED1 underlies the circadian clock regulation of temperature responses in Arabidopsis. Plant Cell 2012;24:2427-42.
    • (2012) Plant Cell , vol.24 , pp. 2427-2442
    • Seo, P.J.1    Park, M.J.2    Lim, M.H.3
  • 61
    • 0028384725 scopus 로고
    • Genes encoding glycine-rich Arabidopsis thaliana proteins with RNA-binding motifs are influenced by cold treatment and an endogenous circadian rhythm
    • Carpenter CD, Kreps JA, Simon AE. Genes encoding glycine-rich Arabidopsis thaliana proteins with RNA-binding motifs are influenced by cold treatment and an endogenous circadian rhythm. Plant Physiol 1994;104:1015-25.
    • (1994) Plant Physiol , vol.104 , pp. 1015-1025
    • Carpenter, C.D.1    Kreps, J.A.2    Simon, A.E.3
  • 62
    • 0028450086 scopus 로고
    • A light- and temperature-entrained circadian clock controls expression of transcripts encoding nuclear proteins with homology to RNA-binding proteins in meristematic tissue
    • Heintzen C, Melzer S, Fischer R, et al. A light- and temperature-entrained circadian clock controls expression of transcripts encoding nuclear proteins with homology to RNA-binding proteins in meristematic tissue. PlantJ 1994; 5:799-813.
    • (1994) Plant J , vol.5 , pp. 799-813
    • Heintzen, C.1    Melzer, S.2    Fischer, R.3
  • 63
    • 53549122472 scopus 로고    scopus 로고
    • The small glycinerich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana
    • Streitner C, Danisman S, Wehrle F, et al. The small glycinerich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana. PlantJ 2008;56:239-50.
    • (2008) Plant J , vol.56 , pp. 239-250
    • Streitner, C.1    Danisman, S.2    Wehrle, F.3
  • 64
    • 47749089005 scopus 로고    scopus 로고
    • Glycine-rich RNA-binding protein 7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana
    • Kim JS, Jung HJ, Lee HJ, et al. Glycine-rich RNA-binding protein 7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. Plant J 2008;55:455-66.
    • (2008) Plant J , vol.55 , pp. 455-466
    • Kim, J.S.1    Jung, H.J.2    Lee, H.J.3
  • 65
    • 58749102066 scopus 로고    scopus 로고
    • Reciprocal regulation of glycine-rich RNA-binding proteins via an interlocked feedback loop coupling alternative splicing to nonsense-mediated decay in Arabidopsis
    • Schoning JC, Streitner C, Meyer IM, et al. Reciprocal regulation of glycine-rich RNA-binding proteins via an interlocked feedback loop coupling alternative splicing to nonsense-mediated decay in Arabidopsis. Nucleic Acids Res 2008;36:6977-87.
    • (2008) Nucleic Acids Res , vol.36 , pp. 6977-6987
    • Schoning, J.C.1    Streitner, C.2    Meyer, I.M.3
  • 66
    • 0037266853 scopus 로고    scopus 로고
    • The circadian clock regulated RNA-binding protein AtGRP7 autoregulates its expression by influencing alternative splicing of its own pre-mRNA
    • Staiger D, Zecca L, Wieczorek Kirk DA, et al. The circadian clock regulated RNA-binding protein AtGRP7 autoregulates its expression by influencing alternative splicing of its own pre-mRNA. Plant J 2003;33:361-71.
    • (2003) Plant J , vol.33 , pp. 361-371
    • Staiger, D.1    Zecca, L.2    Wieczorek Kirk, D.A.3
  • 67
    • 0037022664 scopus 로고    scopus 로고
    • Light modulation of Rubisco in Arabidopsis requires a capacity for redox regulation of the larger Rubisco activase isoform
    • Zhang N, Kallis RP, Ewy RG, et al. Light modulation of Rubisco in Arabidopsis requires a capacity for redox regulation of the larger Rubisco activase isoform. Proc Natl Acad Sci USA 2002;99:3330-4.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 3330-3334
    • Zhang, N.1    Kallis, R.P.2    Ewy, R.G.3
  • 68
    • 62349089764 scopus 로고    scopus 로고
    • Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays
    • Hazen SP, Naef F, Quisel T, et al. Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays. Genome Biol 2009;10:R17.
    • (2009) Genome Biol , vol.10
    • Hazen, S.P.1    Naef, F.2    Quisel, T.3
  • 69
    • 84861441546 scopus 로고    scopus 로고
    • Deep sequencing the circadian and diurnal transcriptome of Drosophila brain
    • Hughes ME, Grant GR, Paquin C, et al. Deep sequencing the circadian and diurnal transcriptome of Drosophila brain. Genome Res 2012;22:1266-81.
    • (2012) Genome Res , vol.22 , pp. 1266-1281
    • Hughes, M.E.1    Grant, G.R.2    Paquin, C.3
  • 70
    • 84862496485 scopus 로고    scopus 로고
    • Regulation of alternative splicing by the circadian clock and food related cues
    • McGlincy NJ, Valomon A, Chesham JE, et al. Regulation of alternative splicing by the circadian clock and food related cues. Genome Biol 2012;13:R54.
    • (2012) Genome Biol , vol.13
    • McGlincy, N.J.1    Valomon, A.2    Chesham, J.E.3
  • 71
    • 77955829612 scopus 로고    scopus 로고
    • Surprising gene expression patterns within and between PDF-containing circadian neurons in Drosophila
    • Kula-Eversole E, Nagoshi E, Shang Y, et al. Surprising gene expression patterns within and between PDF-containing circadian neurons in Drosophila. Proc Natl Acad Sci USA 2010;107:13497-502.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 13497-13502
    • Kula-Eversole, E.1    Nagoshi, E.2    Shang, Y.3
  • 72
    • 60349104299 scopus 로고    scopus 로고
    • The spliceosome: design principles of a dynamic RNP machine
    • Wahl MC, Will CL, Luhrmann R. The spliceosome: design principles of a dynamic RNP machine. Cell 2009; 136:701-18.
    • (2009) Cell , vol.136 , pp. 701-718
    • Wahl, M.C.1    Will, C.L.2    Luhrmann, R.3
  • 73
    • 18344364099 scopus 로고    scopus 로고
    • Understanding alternative splicing: towards a cellular code
    • Matlin AJ, Clark F, Smith CW. Understanding alternative splicing: towards a cellular code. NatRevMolCell Biol 2005; 6:386-98.
    • (2005) Nat Rev Mol Cell Biol , vol.6 , pp. 386-398
    • Matlin, A.J.1    Clark, F.2    Smith, C.W.3
  • 74
    • 58149260378 scopus 로고    scopus 로고
    • Alternative splicing: regulation without regulators
    • Graveley BR. Alternative splicing: regulation without regulators. Nat StructMol Biol 2009;16:13-5.
    • (2009) Nat Struct Mol Biol , vol.16 , pp. 13-15
    • Graveley, B.R.1
  • 75
    • 78650961149 scopus 로고    scopus 로고
    • Epigenetics in alternative pre-mRNA splicing
    • Luco RF, Allo M, Schor IE, et al. Epigenetics in alternative pre-mRNA splicing. Cell 2011;144:16-26.
    • (2011) Cell , vol.144 , pp. 16-26
    • Luco, R.F.1    Allo, M.2    Schor, I.E.3
  • 76
    • 84862777556 scopus 로고    scopus 로고
    • Mediator complex regulates alternative mRNA processing via the MED23 subunit
    • Huang Y, Li W, Yao X, et al. Mediator complex regulates alternative mRNA processing via the MED23 subunit. Mol Cell 2012;45:459-69.
    • (2012) Mol Cell , vol.45 , pp. 459-469
    • Huang, Y.1    Li, W.2    Yao, X.3
  • 77
    • 77149175671 scopus 로고    scopus 로고
    • Regulation of alternative splicing by histone modifications
    • Luco RF, Pan Q, Tominaga K, et al. Regulation of alternative splicing by histone modifications. Science 2010;327: 996-1000.
    • (2010) Science , vol.327 , pp. 996-1000
    • Luco, R.F.1    Pan, Q.2    Tominaga, K.3
  • 78
    • 79956132845 scopus 로고    scopus 로고
    • RNA-Seq analysis in mutant zebrafish reveals role of U1C protein in alternative splicing regulation
    • Rosel TD, Hung LH, Medenbach J, et al. RNA-Seq analysis in mutant zebrafish reveals role of U1C protein in alternative splicing regulation. EMBOJ 2011;30:1965-76.
    • (2011) EMBO J , vol.30 , pp. 1965-1976
    • Rosel, T.D.1    Hung, L.H.2    Medenbach, J.3
  • 79
    • 79951715071 scopus 로고    scopus 로고
    • Regulation of alternative splicing by the core spliceosomal machinery
    • Saltzman AL, Pan Q, Blencowe BJ. Regulation of alternative splicing by the core spliceosomal machinery. GenesDev 2011;25:373-84.
    • (2011) Genes Dev , vol.25 , pp. 373-384
    • Saltzman, A.L.1    Pan, Q.2    Blencowe, B.J.3
  • 80
    • 43049168361 scopus 로고    scopus 로고
    • SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing
    • Zhang Z, Lotti F, Dittmar K, et al. SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing. Cell 2008;133: 585-600.
    • (2008) Cell , vol.133 , pp. 585-600
    • Zhang, Z.1    Lotti, F.2    Dittmar, K.3
  • 81
    • 84861529589 scopus 로고    scopus 로고
    • The RS domain of Arabidopsis splicing factor RRC1 is required for phytochrome B signal transduction
    • Shikata H, Shibata M, Ushijima T, et al. The RS domain of Arabidopsis splicing factor RRC1 is required for phytochrome B signal transduction. Plant J 2012;70: 727-38.
    • (2012) Plant J , vol.70 , pp. 727-738
    • Shikata, H.1    Shibata, M.2    Ushijima, T.3
  • 82
    • 84862568840 scopus 로고    scopus 로고
    • Algorithm to identify frequent coupled modules from two-layered network series: application to study transcription and splicing coupling
    • Li W, Dai C, Liu CC, et al. Algorithm to identify frequent coupled modules from two-layered network series: application to study transcription and splicing coupling. J Comput Biol 2012;19:710-30.
    • (2012) J Comput Biol , vol.19 , pp. 710-730
    • Li, W.1    Dai, C.2    Liu, C.C.3
  • 83
    • 84861444201 scopus 로고    scopus 로고
    • Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (Hordeum vulgare) to short growing seasons
    • Faure S, Turner AS, Gruszka D, et al. Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (Hordeum vulgare) to short growing seasons. ProcNatl Acad SciUSA 2012;109:8328-33.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 8328-8333
    • Faure, S.1    Turner, A.S.2    Gruszka, D.3
  • 84
    • 84858173210 scopus 로고    scopus 로고
    • Induced mutations in circadian clock regulator Mat-a facilitated short-season adaptation and range extension in cultivated barley
    • Zakhrabekova S, Gough SP, Braumann I, et al. Induced mutations in circadian clock regulator Mat-a facilitated short-season adaptation and range extension in cultivated barley. ProcNatl Acad Sci USA 2012;109:4326-31.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 4326-4331
    • Zakhrabekova, S.1    Gough, S.P.2    Braumann, I.3
  • 85
    • 27744446297 scopus 로고    scopus 로고
    • The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley
    • Turner A, Beales J, Faure S, et al. The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 2005;310:1031-4.
    • (2005) Science , vol.310 , pp. 1031-1034
    • Turner, A.1    Beales, J.2    Faure, S.3
  • 86
    • 80053632751 scopus 로고    scopus 로고
    • Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum
    • Murphy RL, Klein RR, Morishige DT, et al. Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum. Proc Natl Acad Sci USA 2011;108:16469-74.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 16469-16474
    • Murphy, R.L.1    Klein, R.R.2    Morishige, D.T.3
  • 87
    • 60149093432 scopus 로고    scopus 로고
    • Dreyfuss G. RNA and disease
    • Cooper TA, Wan L, Dreyfuss G. RNA and disease. Cell 2009;136:777-93.
    • (2009) Cell , vol.136 , pp. 777-793
    • Cooper, T.A.1    Wan, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.