-
1
-
-
80053027909
-
Functional consequences of developmentally regulated alternative splicing
-
Kalsotra A, Cooper TA. Functional consequences of developmentally regulated alternative splicing. Nat Rev Genet 2011;12:715-29.
-
(2011)
Nat Rev Genet
, vol.12
, pp. 715-729
-
-
Kalsotra, A.1
Cooper, T.A.2
-
2
-
-
33745899048
-
Alternative splicing: new insights from global analyses
-
Blencowe BJ. Alternative splicing: new insights from global analyses. Cell 2006;126:37-47.
-
(2006)
Cell
, vol.126
, pp. 37-47
-
-
Blencowe, B.J.1
-
3
-
-
84859293997
-
Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis
-
Kalyna M, Simpson CG, Syed NH, et al. Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis. Nucleic Acids Res 2012;40:2454-69.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 2454-2469
-
-
Kalyna, M.1
Simpson, C.G.2
Syed, N.H.3
-
4
-
-
0037422575
-
Evidence for the widespread coupling of alternative splicing and nonsensemediated mRNA decay in humans
-
Lewis BP, Green RE, Brenner SE. Evidence for the widespread coupling of alternative splicing and nonsensemediated mRNA decay in humans. Proc Natl Acad Sci USA 2003;100:189-92.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 189-192
-
-
Lewis, B.P.1
Green, R.E.2
Brenner, S.E.3
-
5
-
-
77953764202
-
Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation
-
Salomonis N, Schlieve CR, Pereira L, et al. Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation. Proc Natl Acad Sci USA 2010;107:10514-9.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 10514-10519
-
-
Salomonis, N.1
Schlieve, C.R.2
Pereira, L.3
-
6
-
-
75849145292
-
Expansion of the eukaryotic proteome by alternative splicing
-
Nilsen TW, Graveley BR. Expansion of the eukaryotic proteome by alternative splicing. Nature 2010;463:457-63.
-
(2010)
Nature
, vol.463
, pp. 457-463
-
-
Nilsen, T.W.1
Graveley, B.R.2
-
7
-
-
12344250822
-
Function of alternative splicing
-
Stamm S, Ben-Ari S, Rafalska I, et al. Function of alternative splicing. Gene 2005;344:1-20.
-
(2005)
Gene
, vol.344
, pp. 1-20
-
-
Stamm, S.1
Ben-Ari, S.2
Rafalska, I.3
-
8
-
-
84861961269
-
Alternative splicing: decoding an expansive regulatory layer
-
Irimia M, Blencowe BJ. Alternative splicing: decoding an expansive regulatory layer. Curr Opin Cell Biol 2012;24:323-32.
-
(2012)
Curr Opin Cell Biol
, vol.24
, pp. 323-332
-
-
Irimia, M.1
Blencowe, B.J.2
-
9
-
-
56749098074
-
Deep surveying of alternative splicing complexity in the human transcriptome by highthroughput sequencing
-
Pan Q, Shai O, Lee LJ, et al. Deep surveying of alternative splicing complexity in the human transcriptome by highthroughput sequencing. Nat Genet 2008;40:1413-5.
-
(2008)
Nat Genet
, vol.40
, pp. 1413-1415
-
-
Pan, Q.1
Shai, O.2
Lee, L.J.3
-
10
-
-
56549101959
-
Alternative isoform regulation in human tissue transcriptomes
-
Wang ET, Sandberg R, Luo S, et al. Alternative isoform regulation in human tissue transcriptomes. Nature 2008; 456:470-6.
-
(2008)
Nature
, vol.456
, pp. 470-476
-
-
Wang, E.T.1
Sandberg, R.2
Luo, S.3
-
11
-
-
74949084336
-
Genome-wide mapping of alternative splicing in Arabidopsis thaliana
-
Filichkin SA, Priest HD, Givan SA, et al. Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res 2010;20:45-58.
-
(2010)
Genome Res
, vol.20
, pp. 45-58
-
-
Filichkin, S.A.1
Priest, H.D.2
Givan, S.A.3
-
12
-
-
84861890038
-
Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis
-
Marquez Y, Brown JW, Simpson C, et al. Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res 2012;22:1184-95.
-
(2012)
Genome Res
, vol.22
, pp. 1184-1195
-
-
Marquez, Y.1
Brown, J.W.2
Simpson, C.3
-
14
-
-
80053318065
-
RNA-based regulation in the plant circadian clock
-
Staiger D, Green R. RNA-based regulation in the plant circadian clock. Trends Plant Sci 2011;16:517-23.
-
(2011)
Trends Plant Sci
, vol.16
, pp. 517-523
-
-
Staiger, D.1
Green, R.2
-
15
-
-
79551506940
-
Post-transcriptional control of circadian rhythms
-
Kojima S, Shingle DL, Green CB. Post-transcriptional control of circadian rhythms. JCell Sci 2011;124:311-20.
-
(2011)
J Cell Sci
, vol.124
, pp. 311-320
-
-
Kojima, S.1
Shingle, D.L.2
Green, C.B.3
-
16
-
-
0035458732
-
Time zones: a comparative genetics of circadian clocks
-
Young MW, Kay SA. Time zones: a comparative genetics of circadian clocks. Nat RevGenet 2001;2:702-15.
-
(2001)
Nat Rev Genet
, vol.2
, pp. 702-715
-
-
Young, M.W.1
Kay, S.A.2
-
17
-
-
65949094583
-
The implications of multiple circadian clock origins
-
Rosbash M. The implications of multiple circadian clock origins. PLoS Biol 2009;7:e62.
-
(2009)
PLoS Biol
, vol.7
-
-
Rosbash, M.1
-
18
-
-
0035800467
-
Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock
-
Alabadi D, Oyama T, Yanovsky MJ, et al. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 2001;293:880-3.
-
(2001)
Science
, vol.293
, pp. 880-883
-
-
Alabadi, D.1
Oyama, T.2
Yanovsky, M.J.3
-
19
-
-
11844289579
-
Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock
-
Farre EM, Harmer SL, Harmon FG, et al. Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr Biol 2005;15:47-54.
-
(2005)
Curr Biol
, vol.15
, pp. 47-54
-
-
Farre, E.M.1
Harmer, S.L.2
Harmon, F.G.3
-
20
-
-
20444398523
-
PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana
-
Nakamichi N, Kita M, Ito S, et al. PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana. Plant Cell Physiol 2005;46:686-98.
-
(2005)
Plant Cell Physiol
, vol.46
, pp. 686-698
-
-
Nakamichi, N.1
Kita, M.2
Ito, S.3
-
21
-
-
84859508042
-
Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator
-
Huang W, Perez-Garcia P, Pokhilko A, et al. Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator. Science 2012;336:75-9.
-
(2012)
Science
, vol.336
, pp. 75-79
-
-
Huang, W.1
Perez-Garcia, P.2
Pokhilko, A.3
-
22
-
-
84857952188
-
The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops
-
Pokhilko A, Fernandez AP, Edwards KD, et al. The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops. Mol Syst Biol 2012;8:574.
-
(2012)
Mol Syst Biol
, vol.8
, pp. 574
-
-
Pokhilko, A.1
Fernandez, A.P.2
Edwards, K.D.3
-
23
-
-
84857383458
-
Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor
-
Gendron JM, Pruneda-Paz JL, Doherty CJ, et al. Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proc Natl Acad Sci USA 2012;109: 3167-72.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 3167-3172
-
-
Gendron, J.M.1
Pruneda-Paz, J.L.2
Doherty, C.J.3
-
24
-
-
79953730633
-
REVEILLE8 and PSEUDO-REPONSE REGULATOR5 form a negative feedback loop within the Arabidopsis circadian clock
-
Rawat R, Takahashi N, Hsu PY, et al. REVEILLE8 and PSEUDO-REPONSE REGULATOR5 form a negative feedback loop within the Arabidopsis circadian clock. PLoS Genet 2011;7:e1001350.
-
(2011)
PLoS Genet
, vol.7
-
-
Rawat, R.1
Takahashi, N.2
Hsu, P.Y.3
-
25
-
-
70349741081
-
REVEILLE1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways
-
Rawat R, Schwartz J, Jones MA, et al. REVEILLE1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways. Proc Natl Acad Sci USA 2009; 106:16883-8.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 16883-16888
-
-
Rawat, R.1
Schwartz, J.2
Jones, M.A.3
-
26
-
-
79955007772
-
Functional implication of the MYB transcription factor RVE8/LCL5 in the circadian control of histone acetylation
-
Farinas B, Mas P. Functional implication of the MYB transcription factor RVE8/LCL5 in the circadian control of histone acetylation. Plant J 2011;66:318-29.
-
(2011)
Plant J
, vol.66
, pp. 318-329
-
-
Farinas, B.1
Mas, P.2
-
27
-
-
79960621365
-
The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth
-
Nusinow DA, Helfer A, Hamilton EE, et al. The ELF4- ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 2011;475:398-402.
-
(2011)
Nature
, vol.475
, pp. 398-402
-
-
Nusinow, D.A.1
Helfer, A.2
Hamilton, E.E.3
-
28
-
-
79151483227
-
LUX ARRHYTHMO encodes a nighttime repressor of circadian gene expression in the Arabidopsis core clock
-
Helfer A, Nusinow DA, Chow BY, et al. LUX ARRHYTHMO encodes a nighttime repressor of circadian gene expression in the Arabidopsis core clock. Curr Biol 2011;21:126-33.
-
(2011)
Curr Biol
, vol.21
, pp. 126-133
-
-
Helfer, A.1
Nusinow, D.A.2
Chow, B.Y.3
-
29
-
-
79151483729
-
Temporal repression of core circadian genes is mediated through EARLY FLOWERING 3 in Arabidopsis
-
Dixon LE, Knox K, Kozma-Bognar L, et al. Temporal repression of core circadian genes is mediated through EARLY FLOWERING 3 in Arabidopsis. Curr Biol 2011; 21:120-5.
-
(2011)
Curr Biol
, vol.21
, pp. 120-125
-
-
Dixon, L.E.1
Knox, K.2
Kozma-Bognar, L.3
-
30
-
-
84859043500
-
EARLY FLOWERING4 recruitment of EARLY FLOWERING3 in the nucleus sustains the Arabidopsis circadian clock
-
Herrero E, Kolmos E, Bujdoso N, et al. EARLY FLOWERING4 recruitment of EARLY FLOWERING3 in the nucleus sustains the Arabidopsis circadian clock. Plant Cell 2012;24:428-43.
-
(2012)
Plant Cell
, vol.24
, pp. 428-443
-
-
Herrero, E.1
Kolmos, E.2
Bujdoso, N.3
-
31
-
-
84865571932
-
Speed control: cogs and gears that drive the circadian clock
-
Zheng X, Sehgal A. Speed control: cogs and gears that drive the circadian clock. Trends Neurosci 2012;35:574-85.
-
(2012)
Trends Neurosci
, vol.35
, pp. 574-585
-
-
Zheng, X.1
Sehgal, A.2
-
32
-
-
84860299312
-
Timing to perfection: the biology of central and peripheral circadian clocks
-
Albrecht U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron 2012;74:246-60.
-
(2012)
Neuron
, vol.74
, pp. 246-260
-
-
Albrecht, U.1
-
34
-
-
17244373578
-
Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro
-
Nakajima M, Imai K, Ito H, et al. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 2005;308:414-5.
-
(2005)
Science
, vol.308
, pp. 414-415
-
-
Nakajima, M.1
Imai, K.2
Ito, H.3
-
35
-
-
12244296161
-
No transcriptiontranslation feedback in circadian rhythm of KaiC phosphorylation
-
Tomita J, Nakajima M, Kondo T, et al. No transcriptiontranslation feedback in circadian rhythm of KaiC phosphorylation. Science 2005;307:251-4.
-
(2005)
Science
, vol.307
, pp. 251-254
-
-
Tomita, J.1
Nakajima, M.2
Kondo, T.3
-
36
-
-
84861452257
-
Peroxiredoxins are conserved markers of circadian rhythms
-
Edgar RS, Green EW, Zhao Y, et al. Peroxiredoxins are conserved markers of circadian rhythms. Nature 2012;485: 459-64.
-
(2012)
Nature
, vol.485
, pp. 459-464
-
-
Edgar, R.S.1
Green, E.W.2
Zhao, Y.3
-
37
-
-
79251539603
-
Circadian rhythms persist without transcription in a eukaryote
-
O'Neill JS, van Ooijen G, Dixon LE, et al. Circadian rhythms persist without transcription in a eukaryote. Nature 2011;469:554-8.
-
(2011)
Nature
, vol.469
, pp. 554-558
-
-
O'Neill, J.S.1
van Ooijen, G.2
Dixon, L.E.3
-
38
-
-
79251566511
-
Circadian clocks in human red blood cells
-
O'Neill JS, Reddy AB. Circadian clocks in human red blood cells. Nature 2011;469:498-503.
-
(2011)
Nature
, vol.469
, pp. 498-503
-
-
O'Neill, J.S.1
Reddy, A.B.2
-
39
-
-
84858172824
-
(Re)inventing the circadian feedback loop
-
Brown SA, Kowalska E, Dallmann R. (Re)inventing the circadian feedback loop. Dev Cell 2012;22:477-487.
-
(2012)
Dev Cell
, vol.22
, pp. 477-487
-
-
Brown, S.A.1
Kowalska, E.2
Dallmann, R.3
-
40
-
-
33847779219
-
Post-translational modifications regulate the ticking of the circadian clock
-
Gallego M, Virshup DM. Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol 2007;8:139-48.
-
(2007)
Nat Rev Mol Cell Biol
, vol.8
, pp. 139-148
-
-
Gallego, M.1
Virshup, D.M.2
-
41
-
-
84861700013
-
The interactions between the circadian clock and primary metabolism
-
Farre EM, Weise SE. The interactions between the circadian clock and primary metabolism. Curr Opin Plant Biol 2012;15:293-300.
-
(2012)
Curr Opin Plant Biol
, vol.15
, pp. 293-300
-
-
Farre, E.M.1
Weise, S.E.2
-
42
-
-
78649687209
-
Circadian integration of metabolism and energetics
-
Bass J, Takahashi JS. Circadian integration of metabolism and energetics. Science 2010;330:1349-54.
-
(2010)
Science
, vol.330
, pp. 1349-1354
-
-
Bass, J.1
Takahashi, J.S.2
-
43
-
-
66149109671
-
Metabolism control by the circadian clock and vice versa
-
Eckel-Mahan K, Sassone-Corsi P. Metabolism control by the circadian clock and vice versa. Nat StructMol Biol 2009; 16:462-7.
-
(2009)
Nat Struct Mol Biol
, vol.16
, pp. 462-467
-
-
Eckel-Mahan, K.1
Sassone-Corsi, P.2
-
44
-
-
78650995766
-
Spotlight on post-transcriptional control in the circadian system
-
Staiger D, Koster T. Spotlight on post-transcriptional control in the circadian system. Cell Mol Life Sci 2011;68:71-83.
-
(2011)
Cell Mol Life Sci
, vol.68
, pp. 71-83
-
-
Staiger, D.1
Koster, T.2
-
45
-
-
79955906744
-
Posttranscriptional mechanisms in controlling eukaryotic circadian rhythms
-
Zhang L, Weng W, Guo J. Posttranscriptional mechanisms in controlling eukaryotic circadian rhythms. FEBS Lett 2011;585:1400-5.
-
(2011)
FEBS Lett
, vol.585
, pp. 1400-1405
-
-
Zhang, L.1
Weng, W.2
Guo, J.3
-
46
-
-
0023222290
-
A family of unusually spliced biologically active transcripts encoded by a Drosophila clock gene
-
Citri Y, Colot HV, Jacquier AC, et al. A family of unusually spliced biologically active transcripts encoded by a Drosophila clock gene. Nature 1987;326:42-7.
-
(1987)
Nature
, vol.326
, pp. 42-47
-
-
Citri, Y.1
Colot, H.V.2
Jacquier, A.C.3
-
47
-
-
0031740338
-
Two alternatively spliced transcripts from the Drosophila period gene rescue rhythms having different molecular and behavioral characteristics
-
Cheng Y, Gvakharia B, Hardin PE. Two alternatively spliced transcripts from the Drosophila period gene rescue rhythms having different molecular and behavioral characteristics. Mol Cell Biol 1998;18:6505-14.
-
(1998)
Mol Cell Biol
, vol.18
, pp. 6505-6514
-
-
Cheng, Y.1
Gvakharia, B.2
Hardin, P.E.3
-
48
-
-
28644441707
-
Temperature-modulated alternative splicing and promoter use in the Circadian clock gene frequency
-
Colot HV, Loros JJ, Dunlap JC. Temperature-modulated alternative splicing and promoter use in the Circadian clock gene frequency. Mol Biol Cell 2005;16:5563-71.
-
(2005)
Mol Biol Cell
, vol.16
, pp. 5563-5571
-
-
Colot, H.V.1
Loros, J.J.2
Dunlap, J.C.3
-
49
-
-
24344437155
-
Molecular mechanism of temperature sensing by the circadian clock of Neurospora crassa
-
Diernfellner AC, Schafmeier T, Merrow MW, et al. Molecular mechanism of temperature sensing by the circadian clock of Neurospora crassa. Genes Dev 2005;19:1968-73.
-
(2005)
Genes Dev
, vol.19
, pp. 1968-1973
-
-
Diernfellner, A.C.1
Schafmeier, T.2
Merrow, M.W.3
-
50
-
-
78149282260
-
A methyl transferase links the circadian clock to the regulation of alternative splicing
-
Sanchez SE, Petrillo E, Beckwith EJ, et al. A methyl transferase links the circadian clock to the regulation of alternative splicing. Nature 2010;468:112-6.
-
(2010)
Nature
, vol.468
, pp. 112-116
-
-
Sanchez, S.E.1
Petrillo, E.2
Beckwith, E.J.3
-
51
-
-
84860128193
-
Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes
-
James AB, Syed NH, Bordage S, et al. Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes. Plant Cell 2012;24:961-81.
-
(2012)
Plant Cell
, vol.24
, pp. 961-981
-
-
James, A.B.1
Syed, N.H.2
Bordage, S.3
-
52
-
-
84863089087
-
Unproductive alternative splicing and nonsense mRNAs: a widespread phenomenon among plant circadian clock genes
-
Filichkin SA, Mockler TC. Unproductive alternative splicing and nonsense mRNAs: a widespread phenomenon among plant circadian clock genes. Biol Direct 2012;7:20.
-
(2012)
Biol Direct
, vol.7
, pp. 20
-
-
Filichkin, S.A.1
Mockler, T.C.2
-
53
-
-
0033199242
-
How a circadian clock adapts to seasonal decreases in temperature and day length
-
Majercak J, Sidote D, Hardin PE, et al. How a circadian clock adapts to seasonal decreases in temperature and day length. Neuron 1999;24:219-230.
-
(1999)
Neuron
, vol.24
, pp. 219-230
-
-
Majercak, J.1
Sidote, D.2
Hardin, P.E.3
-
54
-
-
1242319314
-
Seasonal behavior in Drosophila melanogaster requires the photoreceptors, the circadian clock, and phospholipase C
-
Collins BH, Rosato E, Kyriacou CP. Seasonal behavior in Drosophila melanogaster requires the photoreceptors, the circadian clock, and phospholipase C. Proc Natl Acad Sci USA 2004;101:1945-50.
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, pp. 1945-1950
-
-
Collins, B.H.1
Rosato, E.2
Kyriacou, C.P.3
-
55
-
-
1842505320
-
Splicing of the period gene 30-terminal intron is regulated by light, circadian clock factors, and phospholipase C
-
Majercak J, Chen WF, Edery I. Splicing of the period gene 30-terminal intron is regulated by light, circadian clock factors, and phospholipase C. Mol Cell Biol 2004;24:3359-72.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 3359-3372
-
-
Majercak, J.1
Chen, W.F.2
Edery, I.3
-
56
-
-
48249111732
-
Thermosensitive splicing of a clock gene and seasonal adaptation
-
Chen WF, Low KH, Lim C, et al. Thermosensitive splicing of a clock gene and seasonal adaptation. Cold Spring Harb Symp Quant Biol 2007;72:599-606.
-
(2007)
Cold Spring Harb Symp Quant Biol
, vol.72
, pp. 599-606
-
-
Chen, W.F.1
Low, K.H.2
Lim, C.3
-
57
-
-
57649200130
-
Natural variation in the splice site strength of a clock gene and species-specific thermal adaptation
-
Low KH, Lim C, Ko HW, et al. Natural variation in the splice site strength of a clock gene and species-specific thermal adaptation. Neuron 2008;60:1054-67.
-
(2008)
Neuron
, vol.60
, pp. 1054-1067
-
-
Low, K.H.1
Lim, C.2
Ko, H.W.3
-
58
-
-
36849002853
-
Long and short isoforms of Neurospora clock protein FRQ support temperature-compensated circadian rhythms
-
Diernfellner A, Colot HV, Dintsis O, et al. Long and short isoforms of Neurospora clock protein FRQ support temperature-compensated circadian rhythms. FEBS Lett 2007;581:5759-5764.
-
(2007)
FEBS Lett
, vol.581
, pp. 5759-5764
-
-
Diernfellner, A.1
Colot, H.V.2
Dintsis, O.3
-
59
-
-
84867026807
-
SKIP is a component of the spliceosome linking alternative splicing and the circadian clock in Arabidopsis
-
Wang X, Wu F, Xie Q, et al. SKIP is a component of the spliceosome linking alternative splicing and the circadian clock in Arabidopsis. Plant Cell 2012;24:3278-95.
-
(2012)
Plant Cell
, vol.24
, pp. 3278-3295
-
-
Wang, X.1
Wu, F.2
Xie, Q.3
-
60
-
-
84864440018
-
A self-regulatory circuit of CIRCADIAN CLOCK-ASSOCIATED1 underlies the circadian clock regulation of temperature responses in Arabidopsis
-
Seo PJ, Park MJ, Lim MH, et al. A self-regulatory circuit of CIRCADIAN CLOCK-ASSOCIATED1 underlies the circadian clock regulation of temperature responses in Arabidopsis. Plant Cell 2012;24:2427-42.
-
(2012)
Plant Cell
, vol.24
, pp. 2427-2442
-
-
Seo, P.J.1
Park, M.J.2
Lim, M.H.3
-
61
-
-
0028384725
-
Genes encoding glycine-rich Arabidopsis thaliana proteins with RNA-binding motifs are influenced by cold treatment and an endogenous circadian rhythm
-
Carpenter CD, Kreps JA, Simon AE. Genes encoding glycine-rich Arabidopsis thaliana proteins with RNA-binding motifs are influenced by cold treatment and an endogenous circadian rhythm. Plant Physiol 1994;104:1015-25.
-
(1994)
Plant Physiol
, vol.104
, pp. 1015-1025
-
-
Carpenter, C.D.1
Kreps, J.A.2
Simon, A.E.3
-
62
-
-
0028450086
-
A light- and temperature-entrained circadian clock controls expression of transcripts encoding nuclear proteins with homology to RNA-binding proteins in meristematic tissue
-
Heintzen C, Melzer S, Fischer R, et al. A light- and temperature-entrained circadian clock controls expression of transcripts encoding nuclear proteins with homology to RNA-binding proteins in meristematic tissue. PlantJ 1994; 5:799-813.
-
(1994)
Plant J
, vol.5
, pp. 799-813
-
-
Heintzen, C.1
Melzer, S.2
Fischer, R.3
-
63
-
-
53549122472
-
The small glycinerich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana
-
Streitner C, Danisman S, Wehrle F, et al. The small glycinerich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana. PlantJ 2008;56:239-50.
-
(2008)
Plant J
, vol.56
, pp. 239-250
-
-
Streitner, C.1
Danisman, S.2
Wehrle, F.3
-
64
-
-
47749089005
-
Glycine-rich RNA-binding protein 7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana
-
Kim JS, Jung HJ, Lee HJ, et al. Glycine-rich RNA-binding protein 7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. Plant J 2008;55:455-66.
-
(2008)
Plant J
, vol.55
, pp. 455-466
-
-
Kim, J.S.1
Jung, H.J.2
Lee, H.J.3
-
65
-
-
58749102066
-
Reciprocal regulation of glycine-rich RNA-binding proteins via an interlocked feedback loop coupling alternative splicing to nonsense-mediated decay in Arabidopsis
-
Schoning JC, Streitner C, Meyer IM, et al. Reciprocal regulation of glycine-rich RNA-binding proteins via an interlocked feedback loop coupling alternative splicing to nonsense-mediated decay in Arabidopsis. Nucleic Acids Res 2008;36:6977-87.
-
(2008)
Nucleic Acids Res
, vol.36
, pp. 6977-6987
-
-
Schoning, J.C.1
Streitner, C.2
Meyer, I.M.3
-
66
-
-
0037266853
-
The circadian clock regulated RNA-binding protein AtGRP7 autoregulates its expression by influencing alternative splicing of its own pre-mRNA
-
Staiger D, Zecca L, Wieczorek Kirk DA, et al. The circadian clock regulated RNA-binding protein AtGRP7 autoregulates its expression by influencing alternative splicing of its own pre-mRNA. Plant J 2003;33:361-71.
-
(2003)
Plant J
, vol.33
, pp. 361-371
-
-
Staiger, D.1
Zecca, L.2
Wieczorek Kirk, D.A.3
-
67
-
-
0037022664
-
Light modulation of Rubisco in Arabidopsis requires a capacity for redox regulation of the larger Rubisco activase isoform
-
Zhang N, Kallis RP, Ewy RG, et al. Light modulation of Rubisco in Arabidopsis requires a capacity for redox regulation of the larger Rubisco activase isoform. Proc Natl Acad Sci USA 2002;99:3330-4.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 3330-3334
-
-
Zhang, N.1
Kallis, R.P.2
Ewy, R.G.3
-
68
-
-
62349089764
-
Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays
-
Hazen SP, Naef F, Quisel T, et al. Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays. Genome Biol 2009;10:R17.
-
(2009)
Genome Biol
, vol.10
-
-
Hazen, S.P.1
Naef, F.2
Quisel, T.3
-
69
-
-
84861441546
-
Deep sequencing the circadian and diurnal transcriptome of Drosophila brain
-
Hughes ME, Grant GR, Paquin C, et al. Deep sequencing the circadian and diurnal transcriptome of Drosophila brain. Genome Res 2012;22:1266-81.
-
(2012)
Genome Res
, vol.22
, pp. 1266-1281
-
-
Hughes, M.E.1
Grant, G.R.2
Paquin, C.3
-
70
-
-
84862496485
-
Regulation of alternative splicing by the circadian clock and food related cues
-
McGlincy NJ, Valomon A, Chesham JE, et al. Regulation of alternative splicing by the circadian clock and food related cues. Genome Biol 2012;13:R54.
-
(2012)
Genome Biol
, vol.13
-
-
McGlincy, N.J.1
Valomon, A.2
Chesham, J.E.3
-
71
-
-
77955829612
-
Surprising gene expression patterns within and between PDF-containing circadian neurons in Drosophila
-
Kula-Eversole E, Nagoshi E, Shang Y, et al. Surprising gene expression patterns within and between PDF-containing circadian neurons in Drosophila. Proc Natl Acad Sci USA 2010;107:13497-502.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 13497-13502
-
-
Kula-Eversole, E.1
Nagoshi, E.2
Shang, Y.3
-
72
-
-
60349104299
-
The spliceosome: design principles of a dynamic RNP machine
-
Wahl MC, Will CL, Luhrmann R. The spliceosome: design principles of a dynamic RNP machine. Cell 2009; 136:701-18.
-
(2009)
Cell
, vol.136
, pp. 701-718
-
-
Wahl, M.C.1
Will, C.L.2
Luhrmann, R.3
-
73
-
-
18344364099
-
Understanding alternative splicing: towards a cellular code
-
Matlin AJ, Clark F, Smith CW. Understanding alternative splicing: towards a cellular code. NatRevMolCell Biol 2005; 6:386-98.
-
(2005)
Nat Rev Mol Cell Biol
, vol.6
, pp. 386-398
-
-
Matlin, A.J.1
Clark, F.2
Smith, C.W.3
-
74
-
-
58149260378
-
Alternative splicing: regulation without regulators
-
Graveley BR. Alternative splicing: regulation without regulators. Nat StructMol Biol 2009;16:13-5.
-
(2009)
Nat Struct Mol Biol
, vol.16
, pp. 13-15
-
-
Graveley, B.R.1
-
75
-
-
78650961149
-
Epigenetics in alternative pre-mRNA splicing
-
Luco RF, Allo M, Schor IE, et al. Epigenetics in alternative pre-mRNA splicing. Cell 2011;144:16-26.
-
(2011)
Cell
, vol.144
, pp. 16-26
-
-
Luco, R.F.1
Allo, M.2
Schor, I.E.3
-
76
-
-
84862777556
-
Mediator complex regulates alternative mRNA processing via the MED23 subunit
-
Huang Y, Li W, Yao X, et al. Mediator complex regulates alternative mRNA processing via the MED23 subunit. Mol Cell 2012;45:459-69.
-
(2012)
Mol Cell
, vol.45
, pp. 459-469
-
-
Huang, Y.1
Li, W.2
Yao, X.3
-
77
-
-
77149175671
-
Regulation of alternative splicing by histone modifications
-
Luco RF, Pan Q, Tominaga K, et al. Regulation of alternative splicing by histone modifications. Science 2010;327: 996-1000.
-
(2010)
Science
, vol.327
, pp. 996-1000
-
-
Luco, R.F.1
Pan, Q.2
Tominaga, K.3
-
78
-
-
79956132845
-
RNA-Seq analysis in mutant zebrafish reveals role of U1C protein in alternative splicing regulation
-
Rosel TD, Hung LH, Medenbach J, et al. RNA-Seq analysis in mutant zebrafish reveals role of U1C protein in alternative splicing regulation. EMBOJ 2011;30:1965-76.
-
(2011)
EMBO J
, vol.30
, pp. 1965-1976
-
-
Rosel, T.D.1
Hung, L.H.2
Medenbach, J.3
-
79
-
-
79951715071
-
Regulation of alternative splicing by the core spliceosomal machinery
-
Saltzman AL, Pan Q, Blencowe BJ. Regulation of alternative splicing by the core spliceosomal machinery. GenesDev 2011;25:373-84.
-
(2011)
Genes Dev
, vol.25
, pp. 373-384
-
-
Saltzman, A.L.1
Pan, Q.2
Blencowe, B.J.3
-
80
-
-
43049168361
-
SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing
-
Zhang Z, Lotti F, Dittmar K, et al. SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing. Cell 2008;133: 585-600.
-
(2008)
Cell
, vol.133
, pp. 585-600
-
-
Zhang, Z.1
Lotti, F.2
Dittmar, K.3
-
81
-
-
84861529589
-
The RS domain of Arabidopsis splicing factor RRC1 is required for phytochrome B signal transduction
-
Shikata H, Shibata M, Ushijima T, et al. The RS domain of Arabidopsis splicing factor RRC1 is required for phytochrome B signal transduction. Plant J 2012;70: 727-38.
-
(2012)
Plant J
, vol.70
, pp. 727-738
-
-
Shikata, H.1
Shibata, M.2
Ushijima, T.3
-
82
-
-
84862568840
-
Algorithm to identify frequent coupled modules from two-layered network series: application to study transcription and splicing coupling
-
Li W, Dai C, Liu CC, et al. Algorithm to identify frequent coupled modules from two-layered network series: application to study transcription and splicing coupling. J Comput Biol 2012;19:710-30.
-
(2012)
J Comput Biol
, vol.19
, pp. 710-730
-
-
Li, W.1
Dai, C.2
Liu, C.C.3
-
83
-
-
84861444201
-
Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (Hordeum vulgare) to short growing seasons
-
Faure S, Turner AS, Gruszka D, et al. Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (Hordeum vulgare) to short growing seasons. ProcNatl Acad SciUSA 2012;109:8328-33.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 8328-8333
-
-
Faure, S.1
Turner, A.S.2
Gruszka, D.3
-
84
-
-
84858173210
-
Induced mutations in circadian clock regulator Mat-a facilitated short-season adaptation and range extension in cultivated barley
-
Zakhrabekova S, Gough SP, Braumann I, et al. Induced mutations in circadian clock regulator Mat-a facilitated short-season adaptation and range extension in cultivated barley. ProcNatl Acad Sci USA 2012;109:4326-31.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 4326-4331
-
-
Zakhrabekova, S.1
Gough, S.P.2
Braumann, I.3
-
85
-
-
27744446297
-
The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley
-
Turner A, Beales J, Faure S, et al. The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 2005;310:1031-4.
-
(2005)
Science
, vol.310
, pp. 1031-1034
-
-
Turner, A.1
Beales, J.2
Faure, S.3
-
86
-
-
80053632751
-
Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum
-
Murphy RL, Klein RR, Morishige DT, et al. Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum. Proc Natl Acad Sci USA 2011;108:16469-74.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 16469-16474
-
-
Murphy, R.L.1
Klein, R.R.2
Morishige, D.T.3
-
87
-
-
60149093432
-
Dreyfuss G. RNA and disease
-
Cooper TA, Wan L, Dreyfuss G. RNA and disease. Cell 2009;136:777-93.
-
(2009)
Cell
, vol.136
, pp. 777-793
-
-
Cooper, T.A.1
Wan, L.2
|