-
2
-
-
70450207654
-
Progress in functionalization of magnetic nanoparticles for applications in biomedicine
-
Berry CC. Progress in functionalization of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 2009;42:224003.
-
(2009)
J Phys D Appl Phys
, vol.42
, pp. 224003
-
-
Berry, C.C.1
-
3
-
-
80054758422
-
In vivo targeted delivery of nanoparticles for theranosis
-
Koo H, Huh MS, Sun IC, Yuk SH, Choi K, Kim K, et al. In vivo targeted delivery of nanoparticles for theranosis. Acc Chem Res 2011;44:1018-28.
-
(2011)
Acc Chem Res
, vol.44
, pp. 1018-1028
-
-
Koo, H.1
Huh, M.S.2
Sun, I.C.3
Yuk, S.H.4
Choi, K.5
Kim, K.6
-
4
-
-
79959937238
-
Nanomaterials for cancer therapy and imaging
-
Bae KH, Chung HJ, Park TG. Nanomaterials for cancer therapy and imaging. Mol Cells 2011;31:295-302.
-
(2011)
Mol Cells
, vol.31
, pp. 295-302
-
-
Bae, K.H.1
Chung, H.J.2
Park, T.G.3
-
5
-
-
80054689368
-
Inorganic nanoparticles for cancer imaging and therapy
-
Huang HC, Barua S, Sharma G, Dey SK, Rege K. Inorganic nanoparticles for cancer imaging and therapy. J Control Release 2011;155:344-57.
-
(2011)
J Control Release
, vol.155
, pp. 344-357
-
-
Huang, H.C.1
Barua, S.2
Sharma, G.3
Dey, S.K.4
Rege, K.5
-
6
-
-
4644371288
-
Cobalt nanoparticles formed in polysiloxane copolymer micelles: effect of production methods on magnetic properties
-
Connolly J, St. Pierre TG, Rutnakornpituk M, Riffle JS. Cobalt nanoparticles formed in polysiloxane copolymer micelles: effect of production methods on magnetic properties. J Phys D Appl Phys 2004;37:2475.
-
(2004)
J Phys D Appl Phys
, vol.37
, pp. 2475
-
-
Connolly, J.1
St. Pierre, T.G.2
Rutnakornpituk, M.3
Riffle, J.S.4
-
7
-
-
70249092162
-
Superparamagnetic nanoparticles as targeted probes for diagnostic and therapeutic applications
-
Xu C, Sun S. Superparamagnetic nanoparticles as targeted probes for diagnostic and therapeutic applications. Dalton Trans 2009;29:5583-91.
-
(2009)
Dalton Trans
, vol.29
, pp. 5583-5591
-
-
Xu, C.1
Sun, S.2
-
9
-
-
0035805163
-
Nanoscale biogenic iron oxides and neurodegenerative disease
-
Dobson J. Nanoscale biogenic iron oxides and neurodegenerative disease. FEBS Lett 2001;496:1-5.
-
(2001)
FEBS Lett
, vol.496
, pp. 1-5
-
-
Dobson, J.1
-
10
-
-
0035196721
-
Magnetodendrimers allow endosomal magnetic labelling and in vivo tracking of stem cells
-
Bulte JW, Douglas T, Witwer B. Magnetodendrimers allow endosomal magnetic labelling and in vivo tracking of stem cells. Nat Biotechnol 2001;19:1141-7.
-
(2001)
Nat Biotechnol
, vol.19
, pp. 1141-1147
-
-
Bulte, J.W.1
Douglas, T.2
Witwer, B.3
-
11
-
-
0041887378
-
Dextran and albumin derivatised nanoparticles: influence on fibroblasts in vitro
-
Berry CC, Wells S, Charles S, Curtis ASG. Dextran and albumin derivatised nanoparticles: influence on fibroblasts in vitro. Biomaterials 2003;24:4551-7.
-
(2003)
Biomaterials
, vol.24
, pp. 4551-4557
-
-
Berry, C.C.1
Wells, S.2
Charles, S.3
Curtis, A.S.G.4
-
12
-
-
2342533902
-
-
Berry CC, Wells S, Charles S, Atchinson G, Curtis ASG. Biomaterials 2004;25:5405-541.
-
(2004)
Biomaterials
, vol.25
, pp. 5405-5541
-
-
Berry, C.C.1
Wells, S.2
Charles, S.3
Atchinson, G.4
Curtis, A.S.G.5
-
13
-
-
60349087326
-
Stable long-term intracellular labelling with fluorescently tagged cationic magnetic liposomes
-
Soenan SJH, Vercauteren D, Braeckmans K, Noppe W, de Smelt S, de Cuyper M. Stable long-term intracellular labelling with fluorescently tagged cationic magnetic liposomes. Chembiochem 2009;10:257-67.
-
(2009)
Chembiochem
, vol.10
, pp. 257-267
-
-
Soenan, S.J.H.1
Vercauteren, D.2
Braeckmans, K.3
Noppe, W.4
de Smelt, S.5
de Cuyper, M.6
-
14
-
-
0032968340
-
Improved delineation of human brain tumors on MR images using a long-circulating, superparamagnetic iron oxide agent
-
Enochs WS, Harsh F, Hochberg F, Weissledher R. Improved delineation of human brain tumors on MR images using a long-circulating, superparamagnetic iron oxide agent. J Magn Reson Imaging 1999;9:228-32.
-
(1999)
J Magn Reson Imaging
, vol.9
, pp. 228-232
-
-
Enochs, W.S.1
Harsh, F.2
Hochberg, F.3
Weissledher, R.4
-
15
-
-
0036120171
-
Comparison of two superparamagnetic viral-sized iron oxide particles ferumoxides and ferumoxtran-10 with a gadolinium chelate in imaging intracranial tumors
-
Varallyay P, Nesbit G, Muldoon LL, Nixon RR, Delashaw JI, Cohen JI, et al. Comparison of two superparamagnetic viral-sized iron oxide particles ferumoxides and ferumoxtran-10 with a gadolinium chelate in imaging intracranial tumors. AJNR Am J Neuroradiol 2002;23:510-9.
-
(2002)
AJNR Am J Neuroradiol
, vol.23
, pp. 510-519
-
-
Varallyay, P.1
Nesbit, G.2
Muldoon, L.L.3
Nixon, R.R.4
Delashaw, J.I.5
Cohen, J.I.6
-
16
-
-
0036120171
-
Comparison of two superparamagnetic viral-sized nanoparticles ferumoxides and ferumoxtran-10 with a gadolinium chelate in imaging intracranial tumors
-
Varallyay P, Nesbit G, Muldoon LL, Nixon RR, Delashaw J, Cohen JI. Comparison of two superparamagnetic viral-sized nanoparticles ferumoxides and ferumoxtran-10 with a gadolinium chelate in imaging intracranial tumors. Am J Neuroradiol 2002;23:510-9.
-
(2002)
Am J Neuroradiol
, vol.23
, pp. 510-519
-
-
Varallyay, P.1
Nesbit, G.2
Muldoon, L.L.3
Nixon, R.R.4
Delashaw, J.5
Cohen, J.I.6
-
17
-
-
4043168654
-
In vivo heating of magnetic nanoparticles in an alternating magnetic field
-
Babincova M, Altanerova V, Altaner C, Cicmanex P, Babinec P. In vivo heating of magnetic nanoparticles in an alternating magnetic field. Med Phys 2004;31:2219-21.
-
(2004)
Med Phys
, vol.31
, pp. 2219-2221
-
-
Babincova, M.1
Altanerova, V.2
Altaner, C.3
Cicmanex, P.4
Babinec, P.5
-
18
-
-
54449085588
-
Challenges in the development of magnetic particles for therapeutic applications
-
Barry SE. Challenges in the development of magnetic particles for therapeutic applications. Int J Hyperthermia 2008;24:451-566.
-
(2008)
Int J Hyperthermia
, vol.24
, pp. 451-566
-
-
Barry, S.E.1
-
19
-
-
0024436512
-
Monoclonal antibody-coated magnetite particles as contrast agents in magnetic resonance imaging of tumors
-
Cerdan S, Lotscher HR, Kunnecke B, Seeling J. Monoclonal antibody-coated magnetite particles as contrast agents in magnetic resonance imaging of tumors. Magn Reson Med 1989;12:151-63.
-
(1989)
Magn Reson Med
, vol.12
, pp. 151-163
-
-
Cerdan, S.1
Lotscher, H.R.2
Kunnecke, B.3
Seeling, J.4
-
20
-
-
0026723461
-
Specific MR imaging of human lymphocytes by monoclonal antibody-guided dextran-magnetite particles
-
Bulte JW, Hoekstra Y, Kamman RL, Magin RL, Webb AG, Briggs RW, et al. Specific MR imaging of human lymphocytes by monoclonal antibody-guided dextran-magnetite particles. Magn Reson Med 1992;25:148-57.
-
(1992)
Magn Reson Med
, vol.25
, pp. 148-157
-
-
Bulte, J.W.1
Hoekstra, Y.2
Kamman, R.L.3
Magin, R.L.4
Webb, A.G.5
Briggs, R.W.6
-
21
-
-
0030279332
-
Development of a target directed magnetic resonance contrast agent using monoclonal antibodyconjugated magnetic nanoparticles
-
Suzuki M, Honda H, Kobayashi T, Wakabayashi T, Yoshida J, Takahashi M. Development of a target directed magnetic resonance contrast agent using monoclonal antibodyconjugated magnetic nanoparticles. Brain Tumor Pathol 1996;13:127-32.
-
(1996)
Brain Tumor Pathol
, vol.13
, pp. 127-132
-
-
Suzuki, M.1
Honda, H.2
Kobayashi, T.3
Wakabayashi, T.4
Yoshida, J.5
Takahashi, M.6
-
22
-
-
24644434876
-
In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals
-
Huh YM. In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc 2006;127:12387-91.
-
(2006)
J Am Chem Soc
, vol.127
, pp. 12387-12391
-
-
Huh, Y.M.1
-
23
-
-
0037373410
-
MR imaging of the HER-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles
-
Arternov D, Mori N, Okollie B, Bhujwalla AM. MR imaging of the HER-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magn Reson Med 2003;49:403-8.
-
(2003)
Magn Reson Med
, vol.49
, pp. 403-408
-
-
Arternov, D.1
Mori, N.2
Okollie, B.3
Bhujwalla, A.M.4
-
24
-
-
23044461449
-
Monoclonal antibody A7-superparamagnetic iron oxide as contrast agent of MR imaging of rectal carcinoma
-
Toma A, Otsuji E, Kuriu Y, Okamoto K, Ichikawa D, Hagiwara A, et al. Monoclonal antibody A7-superparamagnetic iron oxide as contrast agent of MR imaging of rectal carcinoma. Br J Cancer 2005;93:131-6.
-
(2005)
Br J Cancer
, vol.93
, pp. 131-136
-
-
Toma, A.1
Otsuji, E.2
Kuriu, Y.3
Okamoto, K.4
Ichikawa, D.5
Hagiwara, A.6
-
25
-
-
3242691732
-
MR imaging of the her2/neu and 9.2.27 tumor antigens using immunospecific contrast agents
-
Funovics MA, Kapeller B, Hoeller C, Su HS, Kunstfield R, Puig S, et al. MR imaging of the her2/neu and 9.2.27 tumor antigens using immunospecific contrast agents. Magn Reson Imaging 2004;22:843-50.
-
(2004)
Magn Reson Imaging
, vol.22
, pp. 843-850
-
-
Funovics, M.A.1
Kapeller, B.2
Hoeller, C.3
Su, H.S.4
Kunstfield, R.5
Puig, S.6
-
26
-
-
34547119332
-
Impact of single-chain Fv antibody fragment affinity on nanoparticle targeting of epidermal growth factor receptor-expressing tumor cells
-
Zhou Y, Drummond DC, Zou H, Hayes ME, Adams GP, Kirpotin DB, et al. Impact of single-chain Fv antibody fragment affinity on nanoparticle targeting of epidermal growth factor receptor-expressing tumor cells. J Mol Biol 2007;371:934-47.
-
(2007)
J Mol Biol
, vol.371
, pp. 934-947
-
-
Zhou, Y.1
Drummond, D.C.2
Zou, H.3
Hayes, M.E.4
Adams, G.P.5
Kirpotin, D.B.6
-
27
-
-
59449093769
-
Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging
-
Yang L, Mao H, Want A, Cao Z, Peng X, Wang X, et al. Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging. Small 2009;2:235-43.
-
(2009)
Small
, vol.2
, pp. 235-243
-
-
Yang, L.1
Mao, H.2
Want, A.3
Cao, Z.4
Peng, X.5
Wang, X.6
-
28
-
-
20244370577
-
Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging
-
Jun YW, Huh YM, Choi JS, Lee JH, Song HT, Kim S, et al. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 2005;127:5732-3.
-
(2005)
J Am Chem Soc
, vol.127
, pp. 5732-5733
-
-
Jun, Y.W.1
Huh, Y.M.2
Choi, J.S.3
Lee, J.H.4
Song, H.T.5
Kim, S.6
-
29
-
-
33846090375
-
Artificially engineered magnetic nanoparticles for ultra sensitive molecular imaging
-
Lee JH, Huh YM, Jun Y, Seo J, Jang J, Song HT, et al. Artificially engineered magnetic nanoparticles for ultra sensitive molecular imaging. Nat Med 2007;13:95-9.
-
(2007)
Nat Med
, vol.13
, pp. 95-99
-
-
Lee, J.H.1
Huh, Y.M.2
Jun, Y.3
Seo, J.4
Jang, J.5
Song, H.T.6
-
30
-
-
46749132642
-
Multifunctional magnetic nanoparticles for targeted imaging and therapy
-
McCarthy JR, Weissleder R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 2008;60:1241-51.
-
(2008)
Adv Drug Deliv Rev
, vol.60
, pp. 1241-1251
-
-
McCarthy, J.R.1
Weissleder, R.2
-
31
-
-
0036971119
-
Functional magnetic particles for medical application
-
Masashige S. Functional magnetic particles for medical application. J Biosci Bioeng 2002;94:606-13.
-
(2002)
J Biosci Bioeng
, vol.94
, pp. 606-613
-
-
Masashige, S.1
-
32
-
-
38149116268
-
Intracellular heating of living cells through Neel relaxation of magnetic nanoparticles
-
Fortin JP, Gaxeau G, Wilhelm C. Intracellular heating of living cells through Neel relaxation of magnetic nanoparticles. Eur Biophys J 2008;37:223-8.
-
(2008)
Eur Biophys J
, vol.37
, pp. 223-228
-
-
Fortin, J.P.1
Gaxeau, G.2
Wilhelm, C.3
-
33
-
-
57149125463
-
Optimizing magnetic nanoparticle design for nanothermotherapy
-
Gazeau F, Levy M, Wilhelm C. Optimizing magnetic nanoparticle design for nanothermotherapy. Nanomedicine 2008;3:831-44.
-
(2008)
Nanomedicine
, vol.3
, pp. 831-844
-
-
Gazeau, F.1
Levy, M.2
Wilhelm, C.3
-
34
-
-
0347479321
-
Investigation of Tc tuned nanoparticles of magnetic oxides for hyperthermia applications
-
Giri J, Ray A, Dasgupta S, Datta D, Bahadur D. Investigation of Tc tuned nanoparticles of magnetic oxides for hyperthermia applications. Biomed Mater Eng 2003;13:387-99.
-
(2003)
Biomed Mater Eng
, vol.13
, pp. 387-399
-
-
Giri, J.1
Ray, A.2
Dasgupta, S.3
Datta, D.4
Bahadur, D.5
-
35
-
-
0033154142
-
Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field inducted excitation of biocompatible superparamagnetic nanoparticles
-
Jordan A, Scholz R, Wust P, Fahling H, Felix R. Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field inducted excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater 1999;201:413-9.
-
(1999)
J Magn Magn Mater
, vol.201
, pp. 413-419
-
-
Jordan, A.1
Scholz, R.2
Wust, P.3
Fahling, H.4
Felix, R.5
-
36
-
-
0035054902
-
Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia
-
Jordan A, Scholz R, Maier-Hauff K, Johannsen M, Wust P, Nadobny J. Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J Magn Magn Mater 2001;225:118-26.
-
(2001)
J Magn Magn Mater
, vol.225
, pp. 118-126
-
-
Jordan, A.1
Scholz, R.2
Maier-Hauff, K.3
Johannsen, M.4
Wust, P.5
Nadobny, J.6
-
37
-
-
3442878768
-
Magnetite nanoparticleloaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia
-
Ito A, Kuga Y, Honda H, Kikkawa H, Horiuchi A, Watanabe Y, et al. Magnetite nanoparticleloaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia. Cancer Lett 2004;212:167-75.
-
(2004)
Cancer Lett
, vol.212
, pp. 167-175
-
-
Ito, A.1
Kuga, Y.2
Honda, H.3
Kikkawa, H.4
Horiuchi, A.5
Watanabe, Y.6
-
38
-
-
84934435220
-
Application of novel metal nanoparticles as optical/thermal agents in optical mammography and hyperthermic treatment for breast cancer
-
Jin H, Kang KA. Application of novel metal nanoparticles as optical/thermal agents in optical mammography and hyperthermic treatment for breast cancer. Adv Exp Med Biol 2007;599:45-52.
-
(2007)
Adv Exp Med Biol
, vol.599
, pp. 45-52
-
-
Jin, H.1
Kang, K.A.2
-
39
-
-
46249125041
-
Controlling nanoparticle delivery in magnetic nanoparticle hyperthermia for cancer treatment: experimental study in agarose gel
-
Salloum M, Ma RH, Weeks D, Zhu L. Controlling nanoparticle delivery in magnetic nanoparticle hyperthermia for cancer treatment: experimental study in agarose gel. Int J Hyperthermia 2008;24:337-45.
-
(2008)
Int J Hyperthermia
, vol.24
, pp. 337-345
-
-
Salloum, M.1
Ma, R.H.2
Weeks, D.3
Zhu, L.4
-
40
-
-
35748979689
-
Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and threedimensional temperature distribution
-
Johannsen M, Gneveckow U, Thiesen B, Taymoorian K, Cho CH, Waldofner N. Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and threedimensional temperature distribution. Eur Urol 2007;52:1653-62.
-
(2007)
Eur Urol
, vol.52
, pp. 1653-1662
-
-
Johannsen, M.1
Gneveckow, U.2
Thiesen, B.3
Taymoorian, K.4
Cho, C.H.5
Waldofner, N.6
-
41
-
-
33750357187
-
Magnetic nanoparticles for interstitial thermotherapy-feasibility, tolerance and achieved temperatures
-
Wust P, Gneveckow U, Johannsen M, Bohmer D, Henkel T, Kahmann F. Magnetic nanoparticles for interstitial thermotherapy-feasibility, tolerance and achieved temperatures. Int J Hyperthermia 2006;22:673-85.
-
(2006)
Int J Hyperthermia
, vol.22
, pp. 673-685
-
-
Wust, P.1
Gneveckow, U.2
Johannsen, M.3
Bohmer, D.4
Henkel, T.5
Kahmann, F.6
-
42
-
-
53849107761
-
Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles
-
Van Landeghem FKH, Maier-Hauff K, Jordan A, Hoffmann KT, Gneveckow R, Scholz R, et al. Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials 2009;30:52-7.
-
(2009)
Biomaterials
, vol.30
, pp. 52-57
-
-
Van Landeghem, F.K.H.1
Maier-Hauff, K.2
Jordan, A.3
Hoffmann, K.T.4
Gneveckow, R.5
Scholz, R.6
-
43
-
-
57449087672
-
Targeting to carcinoma cells with chitosan and starch coated magnetic nanoparticles for magnetic hyperthermia
-
Kim DH, Kim KN, Kim KM, Lee YK. Targeting to carcinoma cells with chitosan and starch coated magnetic nanoparticles for magnetic hyperthermia. J BiomedMater Res 2008;88A:1-11.
-
(2008)
J BiomedMater Res
, vol.88 A
, pp. 1-11
-
-
Kim, D.H.1
Kim, K.N.2
Kim, K.M.3
Lee, Y.K.4
-
44
-
-
26444620215
-
Development of tumor targeting bioprobes (111In-chimeric L6 monoclonal antibody nanoparticles) for alternating magnetic field cancer therapy
-
DeNardo SJ, DeNArdo GL, Miers LA, Natarajan A, Foreman AR, Gruettner C, et al. Development of tumor targeting bioprobes (111In-chimeric L6 monoclonal antibody nanoparticles) for alternating magnetic field cancer therapy. Clin Cancer Res 2005;11:7087-92.
-
(2005)
Clin Cancer Res
, vol.11
, pp. 7087-7092
-
-
DeNardo, S.J.1
DeNardo, G.L.2
Miers, L.A.3
Natarajan, A.4
Foreman, A.R.5
Gruettner, C.6
-
45
-
-
45749125314
-
Nanoferrite particle based radioimmunonanoparticles: binding affinity and in vivo pharmacokinetics
-
Naratajan A, Gruettner R, Ivkov GL, DeNardo G, Mirick A, Yuan A, et al. Nanoferrite particle based radioimmunonanoparticles: binding affinity and in vivo pharmacokinetics. Bioconjug Chem 2008;19:1211-8.
-
(2008)
Bioconjug Chem
, vol.19
, pp. 1211-1218
-
-
Naratajan, A.1
Gruettner, R.2
Ivkov, G.L.3
DeNardo, G.4
Mirick, A.5
Yuan, A.6
-
46
-
-
0037051086
-
Use of the human MRD1 promotor for heat-inducible expression of therapeutic genes
-
Walther W, Stein U, Schlag P. Use of the human MRD1 promotor for heat-inducible expression of therapeutic genes. Int J Cancer 2002;98:291-6.
-
(2002)
Int J Cancer
, vol.98
, pp. 291-296
-
-
Walther, W.1
Stein, U.2
Schlag, P.3
-
47
-
-
0034810004
-
Heat-inducible TNF-alpha gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy
-
Ito A, Shinkai M, Honda H, Kobayashi T. Heat-inducible TNF-alpha gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy. Cancer Gene Ther 2001;8:649-54.
-
(2001)
Cancer Gene Ther
, vol.8
, pp. 649-654
-
-
Ito, A.1
Shinkai, M.2
Honda, H.3
Kobayashi, T.4
-
48
-
-
41849091800
-
Using thermal energy produced by irradiation of Mn-Zn ferrite magnetic nanoparticles (MZF-NPs) for heat-inducible gene expression
-
Tang QS, Zhang DS, Cong XM, Wan ML, Jin LQ. Using thermal energy produced by irradiation of Mn-Zn ferrite magnetic nanoparticles (MZF-NPs) for heat-inducible gene expression. Biomaterials 2008;29:2673-9.
-
(2008)
Biomaterials
, vol.29
, pp. 2673-2679
-
-
Tang, Q.S.1
Zhang, D.S.2
Cong, X.M.3
Wan, M.L.4
Jin, L.Q.5
-
49
-
-
33646797001
-
Magnetic nanoparticles for drug delivery
-
Dobson J. Magnetic nanoparticles for drug delivery. Drug Dev Res 2006;67:55-60.
-
(2006)
Drug Dev Res
, vol.67
, pp. 55-60
-
-
Dobson, J.1
-
50
-
-
82455181592
-
The influence of both a static magnetic field and penetratin on magnetic nanoparticle delivery into fibroblasts
-
Dejardin T, de la Fuente J, Pino P, Furlani EP, Mullin M, Smith CA, et al. The influence of both a static magnetic field and penetratin on magnetic nanoparticle delivery into fibroblasts. Nanomedicine 2011;6:1719-31.
-
(2011)
Nanomedicine
, vol.6
, pp. 1719-1731
-
-
Dejardin, T.1
de la Fuente, J.2
Pino, P.3
Furlani, E.P.4
Mullin, M.5
Smith, C.A.6
-
51
-
-
77949657067
-
The effect of static magnetic fields and tat peptides on cellular and nuclear uptake of magnetic nanoparticles
-
Smith CA, de la Fuente J, Pelaz B, Furlani EP, Mullin M, Berry CC. The effect of static magnetic fields and tat peptides on cellular and nuclear uptake of magnetic nanoparticles. Biomaterials 2010;15:4392-400.
-
(2010)
Biomaterials
, vol.15
, pp. 4392-4400
-
-
Smith, C.A.1
de la Fuente, J.2
Pelaz, B.3
Furlani, E.P.4
Mullin, M.5
Berry, C.C.6
-
52
-
-
0035747112
-
Clinical applications of magnetic drug targeting
-
Lubbe AS, Alexiou C, Bergmann C. Clinical applications of magnetic drug targeting. J Surg Res 1999;95:200-6.
-
(1999)
J Surg Res
, vol.95
, pp. 200-206
-
-
Lubbe, A.S.1
Alexiou, C.2
Bergmann, C.3
-
54
-
-
3042689597
-
Hepatic cellular distribution and degradation of iron oxide nanoparticles following single intravenous injection in rats: implications for magnetic resonance imaging
-
Briley-Saebo K, Bjornerud A, Grant D, Ahlstrom H, Berg T, Kindberg GM. Hepatic cellular distribution and degradation of iron oxide nanoparticles following single intravenous injection in rats: implications for magnetic resonance imaging. Cell Tissue Res 2004;316:315-23.
-
(2004)
Cell Tissue Res
, vol.316
, pp. 315-323
-
-
Briley-Saebo, K.1
Bjornerud, A.2
Grant, D.3
Ahlstrom, H.4
Berg, T.5
Kindberg, G.M.6
-
55
-
-
18144432070
-
Mathematical modelling of magnetically targeted drug delivery
-
Grief AD, Richardson G. Mathematical modelling of magnetically targeted drug delivery. J Magn Magn Mater 2005;293:455-63.
-
(2005)
J Magn Magn Mater
, vol.293
, pp. 455-463
-
-
Grief, A.D.1
Richardson, G.2
-
56
-
-
21444431821
-
Iron oxide nanoparticles for sustained delivery of anticancer agents
-
Jain TK, Morales MA, Sahoo SK, Leslie-Pelecky DL, Labhasetwar V. Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharm 2005;2:194-205.
-
(2005)
Mol Pharm
, vol.2
, pp. 194-205
-
-
Jain, T.K.1
Morales, M.A.2
Sahoo, S.K.3
Leslie-Pelecky, D.L.4
Labhasetwar, V.5
-
57
-
-
33646735236
-
Methotrexate-immobilised poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery
-
Kohler N, Sun C, Fichtenholz A, Gunn J, Fang C, Zhang MQ. Methotrexate-immobilised poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small 2006;2:785-92.
-
(2006)
Small
, vol.2
, pp. 785-792
-
-
Kohler, N.1
Sun, C.2
Fichtenholz, A.3
Gunn, J.4
Fang, C.5
Zhang, M.Q.6
-
58
-
-
57449098228
-
Magnetic nanoparticles for gene and drug delivery
-
McBain SC, Yiu HH, Dobson J. Magnetic nanoparticles for gene and drug delivery. Int J Nanomed 2008;3:169-80.
-
(2008)
Int J Nanomed
, vol.3
, pp. 169-180
-
-
McBain, S.C.1
Yiu, H.H.2
Dobson, J.3
-
59
-
-
0041627678
-
Targeted gene delivery to human osteocarcinoma cells with magnetic cationic liposomes under a magnetic field
-
Hirao K, Sugita T, Kubo T, Igarashi K, Tanimoto K, Murakami T, et al. Targeted gene delivery to human osteocarcinoma cells with magnetic cationic liposomes under a magnetic field. Int J Oncol 2003;22:1065-71.
-
(2003)
Int J Oncol
, vol.22
, pp. 1065-1071
-
-
Hirao, K.1
Sugita, T.2
Kubo, T.3
Igarashi, K.4
Tanimoto, K.5
Murakami, T.6
-
60
-
-
10644237850
-
Synchronised infection of cell cultures by magnetically controlled virus
-
Haim H, Steiner I, Panet A. Synchronised infection of cell cultures by magnetically controlled virus. J Virol 2005;79:622-5.
-
(2005)
J Virol
, vol.79
, pp. 622-625
-
-
Haim, H.1
Steiner, I.2
Panet, A.3
-
61
-
-
45849133421
-
Nanoscale magnetic biotransport with application to magnetofection
-
Furlani EP, Ng KC. Nanoscale magnetic biotransport with application to magnetofection. Phys Rev 2008;77:0619141-8.
-
(2008)
Phys Rev
, vol.77
, pp. 0619141-0619148
-
-
Furlani, E.P.1
Ng, K.C.2
-
62
-
-
32444450342
-
Gene therapy progress and prospectives: magnetic nanoparticle-based gene delivery
-
Dobson J. Gene therapy progress and prospectives: magnetic nanoparticle-based gene delivery. Gene Ther 2006;13:283-7.
-
(2006)
Gene Ther
, vol.13
, pp. 283-287
-
-
Dobson, J.1
-
63
-
-
38449098069
-
Generation of magnetic nonviral gene transfer agents and magnetofection in vitro
-
Mykhaylyk O, Antequera YS, Vlaskou D, Plank C. Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nat Protoc 2007;2:2391-411.
-
(2007)
Nat Protoc
, vol.2
, pp. 2391-2411
-
-
Mykhaylyk, O.1
Antequera, Y.S.2
Vlaskou, D.3
Plank, C.4
-
64
-
-
0032545933
-
Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans
-
Fire A, Xu SQ, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391:806-11.
-
(1998)
Nature
, vol.391
, pp. 806-811
-
-
Fire, A.1
Xu, S.Q.2
Montgomery, M.K.3
Kostas, S.A.4
Driver, S.E.5
Mello, C.C.6
-
65
-
-
67649386118
-
Concepts in in vivo siRNA delivery for cancer therapy
-
Gondi CS, Rao JS. Concepts in in vivo siRNA delivery for cancer therapy. J Cell Physiol 2009;220:285-91.
-
(2009)
J Cell Physiol
, vol.220
, pp. 285-291
-
-
Gondi, C.S.1
Rao, J.S.2
-
66
-
-
47249138782
-
Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides
-
Juliano R, Alam MR, Dixit V, Kang H. Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides. Nucleic Acids Res 2008;36:4158-71.
-
(2008)
Nucleic Acids Res
, vol.36
, pp. 4158-4171
-
-
Juliano, R.1
Alam, M.R.2
Dixit, V.3
Kang, H.4
-
67
-
-
34648831747
-
Targeted quantum dot conjugates for siRNA delivery
-
Derfus AM, Chen AA, Min DH, Ruoslahti E, Bhatia SN. Targeted quantum dot conjugates for siRNA delivery. Bioconjug Chem 2007;18:1391-6.
-
(2007)
Bioconjug Chem
, vol.18
, pp. 1391-1396
-
-
Derfus, A.M.1
Chen, A.A.2
Min, D.H.3
Ruoslahti, E.4
Bhatia, S.N.5
-
68
-
-
9144247189
-
Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs
-
Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004;432:173-8.
-
(2004)
Nature
, vol.432
, pp. 173-178
-
-
Soutschek, J.1
Akinc, A.2
Bramlage, B.3
Charisse, K.4
Constien, R.5
Donoghue, M.6
-
69
-
-
33847720312
-
In vivo imaging of siRNA delivery and silencing in tumors
-
Medarova Z, Pham W, Farrar C, Petkova V, Moore A. In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 2007;13:372-7.
-
(2007)
Nat Med
, vol.13
, pp. 372-377
-
-
Medarova, Z.1
Pham, W.2
Farrar, C.3
Petkova, V.4
Moore, A.5
-
70
-
-
70349964558
-
All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery
-
Lee JH, Lee K, Moon SH, Lee Y, Park TG, Cheon J. All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew Chem Int Ed 2009;48:4174-9.
-
(2009)
Angew Chem Int Ed
, vol.48
, pp. 4174-4179
-
-
Lee, J.H.1
Lee, K.2
Moon, S.H.3
Lee, Y.4
Park, T.G.5
Cheon, J.6
-
71
-
-
0032535999
-
Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model
-
Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 1998;279:377-80.
-
(1998)
Science
, vol.279
, pp. 377-380
-
-
Arap, W.1
Pasqualini, R.2
Ruoslahti, E.3
-
73
-
-
0037127714
-
Drastic reduction of plasmon damping in gold nanorods
-
Sonnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J, Wilson O, et al. Drastic reduction of plasmon damping in gold nanorods. Phys Rev Lett 2002;88:077402.
-
(2002)
Phys Rev Lett
, vol.88
, pp. 077402
-
-
Sonnichsen, C.1
Franzl, T.2
Wilk, T.3
von Plessen, G.4
Feldmann, J.5
Wilson, O.6
-
74
-
-
67651233657
-
Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity
-
Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 2009;38:1759-82.
-
(2009)
Chem Soc Rev
, vol.38
, pp. 1759-1782
-
-
Boisselier, E.1
Astruc, D.2
-
75
-
-
31944448448
-
Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents
-
Souza GR, Christianson DR, Staquicini FI, Ozawa MG, Snyder EY, Sidman RL, et al. Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents. Proc Natl Acad Sci USA 2006;103:1215-20.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 1215-1220
-
-
Souza, G.R.1
Christianson, D.R.2
Staquicini, F.I.3
Ozawa, M.G.4
Snyder, E.Y.5
Sidman, R.L.6
-
76
-
-
56149112931
-
Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres
-
Skala MC, Crow MJ, Wax A, Izatt JA. Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres. Nano Lett 2008;8:3461-7.
-
(2008)
Nano Lett
, vol.8
, pp. 3461-3467
-
-
Skala, M.C.1
Crow, M.J.2
Wax, A.3
Izatt, J.A.4
-
77
-
-
2942700080
-
Multiphoton plasmon-resonance microscopy
-
Yelin D, Oron D, Thiberge S, Moses E, Silberberg Y. Multiphoton plasmon-resonance microscopy. Opt Express 2003;16:1385-91.
-
(2003)
Opt Express
, vol.16
, pp. 1385-1391
-
-
Yelin, D.1
Oron, D.2
Thiberge, S.3
Moses, E.4
Silberberg, Y.5
-
78
-
-
51149090145
-
Biological applications of gold nanoparticles
-
Sperling RA, Rivera Gil P, Zhang F, Zanella M, Parak WJ. Biological applications of gold nanoparticles. Chem Soc Rev 2008;37:1896-908.
-
(2008)
Chem Soc Rev
, vol.37
, pp. 1896-1908
-
-
Sperling, R.A.1
Gil, P.R.2
Zhang, F.3
Zanella, M.4
Parak, W.J.5
-
79
-
-
0033799507
-
A review of the potential and versatility of colloidal gold cytochemical labelling for molecular morphology
-
Brendayan M. A review of the potential and versatility of colloidal gold cytochemical labelling for molecular morphology. Biotech Histochem 2000;75:203-42.
-
(2000)
Biotech Histochem
, vol.75
, pp. 203-242
-
-
Brendayan, M.1
-
80
-
-
0024394083
-
Neuronal imaging with colloidal gold
-
van del Pol AN. Neuronal imaging with colloidal gold. J Microsc 1980;155:27-59.
-
(1980)
J Microsc
, vol.155
, pp. 27-59
-
-
van del Pol, A.N.1
-
81
-
-
0025600919
-
In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment
-
Yang NS, Burkholder J, MArtinell B, McCabe D. In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proc Natl Acad Sci USA 1990;87:9568-72.
-
(1990)
Proc Natl Acad Sci USA
, vol.87
, pp. 9568-9572
-
-
Yang, N.S.1
Burkholder, J.2
Martinell, B.3
McCabe, D.4
-
82
-
-
0033941366
-
Particlemediated gene transfer into murine livers using a newly developed gene gun
-
Kuriyama S, Mitoro A, Tsujinoue H, Nakatani T, Yoshiji H, Tsujimoto T, et al. Particlemediated gene transfer into murine livers using a newly developed gene gun. Gene Ther 2000;7:1132-6.
-
(2000)
Gene Ther
, vol.7
, pp. 1132-1136
-
-
Kuriyama, S.1
Mitoro, A.2
Tsujinoue, H.3
Nakatani, T.4
Yoshiji, H.5
Tsujimoto, T.6
-
83
-
-
18844389263
-
Transferring-mediated gold nanoparticle cellular uptake
-
Yang PH, Sun X, Chiu JF, Sun H, Je QY. Transferring-mediated gold nanoparticle cellular uptake. Bioconjug Chem 2005;16:494-6.
-
(2005)
Bioconjug Chem
, vol.16
, pp. 494-496
-
-
Yang, P.H.1
Sun, X.2
Chiu, J.F.3
Sun, H.4
Je, Q.Y.5
-
84
-
-
34547302844
-
Elucidating the mechanism of cellular uptake and removal of proteincoated gold nanoparticles of different sizes and shapes
-
Chithrani BD, ChanWC. Elucidating the mechanism of cellular uptake and removal of proteincoated gold nanoparticles of different sizes and shapes. Nano Lett 2007;7:1542-50.
-
(2007)
Nano Lett
, vol.7
, pp. 1542-1550
-
-
Chithrani, B.D.1
Chan, W.C.2
-
85
-
-
0026447434
-
Signal-mediated nuclear transport in simian virus 40- transformed cells is regulated by large tumor antigen
-
Feldherr CM, Lanford RE, Akin D. Signal-mediated nuclear transport in simian virus 40- transformed cells is regulated by large tumor antigen. Proc Natl Acad Sci USA 1992;89: 11002-5.
-
(1992)
Proc Natl Acad Sci USA
, vol.89
, pp. 11002-11005
-
-
Feldherr, C.M.1
Lanford, R.E.2
Akin, D.3
-
86
-
-
0037462130
-
Multifunctional gold nanoparticle-peptide complexes for nuclear targeting
-
Tkachenko AG, Xie H, Coleman D, Glomm W, Ryan J, Anderson MF, et al. Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. J Am Chem Soc 2003;125:4700-1.
-
(2003)
J Am Chem Soc
, vol.125
, pp. 4700-4701
-
-
Tkachenko, A.G.1
Xie, H.2
Coleman, D.3
Glomm, W.4
Ryan, J.5
Anderson, M.F.6
-
87
-
-
36749032748
-
Nuclear localisation of HIV- 1 tat functionalised gold nanoparticles
-
Berry CC, de la Fuente J, Mullin M, Wai Ling Chu S, Curtis A. Nuclear localisation of HIV- 1 tat functionalised gold nanoparticles. IEEE TNB 2007;6:262-9.
-
(2007)
IEEE TNB
, vol.6
, pp. 262-269
-
-
Berry, C.C.1
de la Fuente, J.2
Mullin, M.3
Wai Ling Chu, S.4
Curtis, A.5
-
88
-
-
34249673425
-
Plasmonic nanosensors for imaging intracellular biomarkers in live cells
-
Kumar S, Harrison N, Richards-Kortum R, Sokolov K. Plasmonic nanosensors for imaging intracellular biomarkers in live cells. Nano Lett 2007;7:1338-43.
-
(2007)
Nano Lett
, vol.7
, pp. 1338-1343
-
-
Kumar, S.1
Harrison, N.2
Richards-Kortum, R.3
Sokolov, K.4
-
89
-
-
35748932678
-
SERS as a foundation for nanoscale optically detected biological labels
-
Doering WE, Piotti ME, NAtan MJ, Freeman RG. SERS as a foundation for nanoscale optically detected biological labels. Adv Mater 2007;19:3100-8.
-
(2007)
Adv Mater
, vol.19
, pp. 3100-3108
-
-
Doering, W.E.1
Piotti, M.E.2
Natan, M.J.3
Freeman, R.G.4
-
90
-
-
0029781508
-
A DNA-based method for rationally assembling nanoparticles into macroscopic materials
-
Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996;382:607-9.
-
(1996)
Nature
, vol.382
, pp. 607-609
-
-
Mirkin, C.A.1
Letsinger, R.L.2
Mucic, R.C.3
Storhoff, J.J.4
-
91
-
-
2442575025
-
Bio-bar-code-based DNA detection with PCR-like sensitivity
-
Man JM, Stoeva SI, Mirkin CA. Bio-bar-code-based DNA detection with PCR-like sensitivity. J Am Chem Soc 2004;126:5932-3.
-
(2004)
J Am Chem Soc
, vol.126
, pp. 5932-5933
-
-
Man, J.M.1
Stoeva, S.I.2
Mirkin, C.A.3
-
92
-
-
49449096052
-
Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging
-
He H, Xie C, Ren J. Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging. Anal Chem 2008;80:5951-7.
-
(2008)
Anal Chem
, vol.80
, pp. 5951-5957
-
-
He, H.1
Xie, C.2
Ren, J.3
-
93
-
-
18744371073
-
Fluorescence quenching f dye molecules near gold nanoparticles: radiative and nonradiative effects
-
Dulkeith E, Morteani AC, Niedereichholz T, Klar TA, Feldmann J, Levi SA, et al. Fluorescence quenching f dye molecules near gold nanoparticles: radiative and nonradiative effects. Phys Rev Lett 2002;89:2003002.
-
(2002)
Phys Rev Lett
, vol.89
, pp. 2003002
-
-
Dulkeith, E.1
Morteani, A.C.2
Niedereichholz, T.3
Klar, T.A.4
Feldmann, J.5
Levi, S.A.6
-
94
-
-
18144370051
-
Gold nanoparticles quench fluorescence by phase induced radiative rate suppression
-
Dulkeith R, Ringler M, Klar TA, Feldmann J, Munoz JA, Parak WJ. Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. Nano Lett 2005;5:585-9.
-
(2005)
Nano Lett
, vol.5
, pp. 585-589
-
-
Dulkeith, R.1
Ringler, M.2
Klar, T.A.3
Feldmann, J.4
Munoz, J.A.5
Parak, W.J.6
-
95
-
-
0030084093
-
Semiconductor clusters, nanocrystals, and quantum dots
-
Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996;271: 933-7.
-
(1996)
Science
, vol.271
, pp. 933-937
-
-
Alivisatos, A.P.1
-
97
-
-
0012392952
-
Semiconductor nanocrystals as fluorescent biological labels
-
Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science 1988;281:2013-6.
-
(1988)
Science
, vol.281
, pp. 2013-2016
-
-
Bruchez, M.1
Moronne, M.2
Gin, P.3
Weiss, S.4
Alivisatos, A.P.5
-
98
-
-
0035690028
-
Properties of fluorescent semiconductor nanocrystals and their applications to biological labelling
-
Michalet X, Pinaud F, Lacoste TD, Dahan M, Bruchez M. Properties of fluorescent semiconductor nanocrystals and their applications to biological labelling. Single Mol 2001;2:261-76.
-
(2001)
Single Mol
, vol.2
, pp. 261-276
-
-
Michalet, X.1
Pinaud, F.2
Lacoste, T.D.3
Dahan, M.4
Bruchez, M.5
-
99
-
-
0036570163
-
Targeting cell surface receptors with ligand-conjugated nanocrystals
-
Rosenthal SJ, Tomlinson I, Adkins EM, Schroeter S, Adams S, Swafford L, et al. Targeting cell surface receptors with ligand-conjugated nanocrystals. J Am Chem Soc 2002;124: 4586-94.
-
(2002)
J Am Chem Soc
, vol.124
, pp. 4586-4594
-
-
Rosenthal, S.J.1
Tomlinson, I.2
Adkins, E.M.3
Schroeter, S.4
Adams, S.5
Swafford, L.6
-
100
-
-
0037225979
-
Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots
-
Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 2003;21:41-6.
-
(2003)
Nat Biotechnol
, vol.21
, pp. 41-46
-
-
Wu, X.1
Liu, H.2
Liu, J.3
Haley, K.N.4
Treadway, J.A.5
Larson, J.P.6
-
101
-
-
84922523364
-
Intracellular imaging of targeted proteins labeled with quantum dots
-
Yoo J, Kambara T, Gonda K, Higuchi H. Intracellular imaging of targeted proteins labeled with quantum dots. Exp Cell Res 2008;314:3563-9.
-
(2008)
Exp Cell Res
, vol.314
, pp. 3563-3569
-
-
Yoo, J.1
Kambara, T.2
Gonda, K.3
Higuchi, H.4
-
102
-
-
70350780197
-
Enhancement of human bone marrow cell uptake of quantum dots using tat peptide
-
Berry CC, Harianawala H, Loebus J, Oreffo ROC, de la Fuente J. Enhancement of human bone marrow cell uptake of quantum dots using tat peptide. Curr Nanosci 2009;5:390-5.
-
(2009)
Curr Nanosci
, vol.5
, pp. 390-395
-
-
Berry, C.C.1
Harianawala, H.2
Loebus, J.3
Oreffo, R.O.C.4
de la Fuente, J.5
-
103
-
-
0020321716
-
Introduction of macromolecules into cultured mammalian cells by osmotic lysis of pinocytic vesicles
-
Okada CY, Rechsteiner M. Introduction of macromolecules into cultured mammalian cells by osmotic lysis of pinocytic vesicles. Cell 1982;29:33-41.
-
(1982)
Cell
, vol.29
, pp. 33-41
-
-
Okada, C.Y.1
Rechsteiner, M.2
-
104
-
-
33746871112
-
Tracking individual kinesin motors in living cells using single quantum dot imaging
-
Courty S, Luccardini C, Bellaïche Y, Cappello G, Dahan M. Tracking individual kinesin motors in living cells using single quantum dot imaging. Nano Lett 2006;6:1491-5.
-
(2006)
Nano Lett
, vol.6
, pp. 1491-1495
-
-
Courty, S.1
Luccardini, C.2
Bellaïche, Y.3
Cappello, G.4
Dahan, M.5
-
106
-
-
33846846326
-
Altered membrane dynamics of quantum dotconjugated integrins during osteogenic differentiation of human bone marrow derived progenitor cells
-
Chen H, Titushkin I, Stroscio M, Cho M. Altered membrane dynamics of quantum dotconjugated integrins during osteogenic differentiation of human bone marrow derived progenitor cells. Biophys J 2007;92:1399-408.
-
(2007)
Biophys J
, vol.92
, pp. 1399-1408
-
-
Chen, H.1
Titushkin, I.2
Stroscio, M.3
Cho, M.4
-
107
-
-
2242495402
-
In vivo imaging of quantum dots encapsulated in phospholipid micelles
-
Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002; 298:1759-62.
-
(2002)
Science
, vol.298
, pp. 1759-1762
-
-
Dubertret, B.1
Skourides, P.2
Norris, D.J.3
Noireaux, V.4
Brivanlou, A.H.5
Libchaber, A.6
-
108
-
-
0019494948
-
Cell surface contacts illuminated by total internal reflection fluorescence
-
Axelrod D. Cell surface contacts illuminated by total internal reflection fluorescence. J Cell Biol 1981;89:141-5.
-
(1981)
J Cell Biol
, vol.89
, pp. 141-145
-
-
Axelrod, D.1
-
109
-
-
0036792082
-
Nanocrystal targeting in vivo
-
Mkerman MA, Chan WCW, Laakkonen P, Chatia SN, Ruoslahti E. Nanocrystal targeting in vivo. Proc Natl Acad Sci USA 2002;99:12617-21.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 12617-12621
-
-
Mkerman, M.A.1
Chan, W.C.W.2
Laakkonen, P.3
Chatia, S.N.4
Ruoslahti, E.5
-
110
-
-
13844296384
-
In vivo molecular and cellular imaging with quantum dots
-
Gao X, Yang L, Petros JA, Marshall FF, Simons J, Nie S. In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 2004;16:63-72.
-
(2004)
Curr Opin Biotechnol
, vol.16
, pp. 63-72
-
-
Gao, X.1
Yang, L.2
Petros, J.A.3
Marshall, F.F.4
Simons, J.5
Nie, S.6
-
111
-
-
58149265168
-
Enhanced intratumoral uptake of quantum dots concealed within hydrogel nanoparticles
-
Nair A, Shen JH, Thevenot P, Zou L, Cai T, Hu ZB, et al. Enhanced intratumoral uptake of quantum dots concealed within hydrogel nanoparticles. Nanotechnology 2008;19:48.
-
(2008)
Nanotechnology
, vol.19
, pp. 48
-
-
Nair, A.1
Shen, J.H.2
Thevenot, P.3
Zou, L.4
Cai, T.5
Hu, Z.B.6
-
112
-
-
77949556540
-
Functionalized near-infrared quantum dots for in vitro tumor vasculature imaging
-
Hu R, Yong KT, Roy I, Ding H, Law WC, Cai HX, et al. Functionalized near-infrared quantum dots for in vitro tumor vasculature imaging. Nanotechnology 2010;21:14.
-
(2010)
Nanotechnology
, vol.21
, pp. 14
-
-
Hu, R.1
Yong, K.T.2
Roy, I.3
Ding, H.4
Law, W.C.5
Cai, H.X.6
-
113
-
-
0344304541
-
Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels
-
Christian S, Pilch J, Akerman ME, Porkka K, Laakkonen P, Ruoslahti E. Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J Cell Biol 2003;163:871-8.
-
(2003)
J Cell Biol
, vol.163
, pp. 871-878
-
-
Christian, S.1
Pilch, J.2
Akerman, M.E.3
Porkka, K.4
Laakkonen, P.5
Ruoslahti, E.6
-
114
-
-
0032578904
-
Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers
-
Kong J, Soh HT, Cassell AM, Quate CF, Dai H. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 1998;395:878-81.
-
(1998)
Nature
, vol.395
, pp. 878-881
-
-
Kong, J.1
Soh, H.T.2
Cassell, A.M.3
Quate, C.F.4
Dai, H.5
-
116
-
-
15544375926
-
Band gap fluorescence from individual single walled carbon nanotubes
-
O'Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, et al. Band gap fluorescence from individual single walled carbon nanotubes. Science 2002;297:593-6.
-
(2002)
Science
, vol.297
, pp. 593-596
-
-
O'Connell, M.J.1
Bachilo, S.M.2
Huffman, C.B.3
Moore, V.C.4
Strano, M.S.5
Haroz, E.H.6
-
117
-
-
80051885786
-
Interfacing neurons with carbon nanotubes: (re) engineering neuronal signalling
-
Fabbro A, Cellot G, Prato M, Ballerini L. Interfacing neurons with carbon nanotubes: (re) engineering neuronal signalling. Prog Brain Res 2011;194:241-52.
-
(2011)
Prog Brain Res
, vol.194
, pp. 241-252
-
-
Fabbro, A.1
Cellot, G.2
Prato, M.3
Ballerini, L.4
-
118
-
-
77952388607
-
Directional neurite growth using carbon nanotube patterned substrates as a biomimetic cue
-
Jang MJ, Namgung S, Hong S, Nam Y. Directional neurite growth using carbon nanotube patterned substrates as a biomimetic cue. Nanotechnology 2010;21:235102-8.
-
(2010)
Nanotechnology
, vol.21
, pp. 235102-235108
-
-
Jang, M.J.1
Namgung, S.2
Hong, S.3
Nam, Y.4
-
119
-
-
0033836999
-
Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth
-
Mattson MP, Haddon RC, Rao AM. Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. J Mol Neurosci 2000;14:175-82.
-
(2000)
J Mol Neurosci
, vol.14
, pp. 175-182
-
-
Mattson, M.P.1
Haddon, R.C.2
Rao, A.M.3
-
120
-
-
32944455868
-
Chemically functionalized water soluble single-walled carbon nanotubes modulate neurite outgrowth
-
Ni Y, Hu H, Malarkey EB, Zhao B, Montana V, Haddon RC, et al. Chemically functionalized water soluble single-walled carbon nanotubes modulate neurite outgrowth. J Nanosci Nanotechnol 2005;5:1707-12.
-
(2005)
J Nanosci Nanotechnol
, vol.5
, pp. 1707-1712
-
-
Ni, Y.1
Hu, H.2
Malarkey, E.B.3
Zhao, B.4
Montana, V.5
Haddon, R.C.6
-
121
-
-
59849104708
-
Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts
-
Cellot G, Cilia E, Cipollone S, Rancic V, Sucapane A, Giordani S, et al. Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. Nat Nanotechnol 2009;4:126-33.
-
(2009)
Nat Nanotechnol
, vol.4
, pp. 126-133
-
-
Cellot, G.1
Cilia, E.2
Cipollone, S.3
Rancic, V.4
Sucapane, A.5
Giordani, S.6
-
122
-
-
46749136816
-
Carbon nanotube coating improves neuronal recordings
-
Keefer EW, Botterman BR, Romero MI, Rossi AF, Gross GW. Carbon nanotube coating improves neuronal recordings. Nat Nanotechnol 2008;3:434-9.
-
(2008)
Nat Nanotechnol
, vol.3
, pp. 434-439
-
-
Keefer, E.W.1
Botterman, B.R.2
Romero, M.I.3
Rossi, A.F.4
Gross, G.W.5
-
123
-
-
84890884216
-
Carbon nanotube electrodes for effective interfacing with retinal tissue
-
Shoval A, Adams C, David-Pur M, Shein M, Hanein Y, Sernagor E. Carbon nanotube electrodes for effective interfacing with retinal tissue. Front Neuroeng 2009;2:1-8.
-
(2009)
Front Neuroeng
, vol.2
, pp. 1-8
-
-
Shoval, A.1
Adams, C.2
David-Pur, M.3
Shein, M.4
Hanein, Y.5
Sernagor, E.6
-
124
-
-
70350303223
-
Nanomaterials for neural interfaces
-
Kotov NA, Winter JO, Clements IP, Jan E, Timko BP, Campidelli S, et al. Nanomaterials for neural interfaces. Adv Mater 2009;21:3970-4004.
-
(2009)
Adv Mater
, vol.21
, pp. 3970-4004
-
-
Kotov, N.A.1
Winter, J.O.2
Clements, I.P.3
Jan, E.4
Timko, B.P.5
Campidelli, S.6
-
125
-
-
73249145012
-
In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes
-
Moon HK, Lee SH, Choi HC. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano 2009;3:370.7-370.3713.
-
(2009)
ACS Nano
, vol.3
, pp. 3707-3703713
-
-
Moon, H.K.1
Lee, S.H.2
Choi, H.C.3
-
126
-
-
69149092835
-
Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation
-
Burke A, Ding X, Singh R, Kraft RA, Levi-Polyachenko N, Rylander MN, et al. Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc Natl Acad Sci USA 2009;106:12897-902.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 12897-12902
-
-
Burke, A.1
Ding, X.2
Singh, R.3
Kraft, R.A.4
Levi-Polyachenko, N.5
Rylander, M.N.6
-
127
-
-
34447329851
-
Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes
-
McDevitt MR, Chattopadhyay D, Kappel BJ, Jaggi JS, Schiffman SR, Antczak C, et al. Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J Nucl Med 2007;48:1180-9.
-
(2007)
J Nucl Med
, vol.48
, pp. 1180-1189
-
-
McDevitt, M.R.1
Chattopadhyay, D.2
Kappel, B.J.3
Jaggi, J.S.4
Schiffman, S.R.5
Antczak, C.6
-
128
-
-
62149136893
-
Cancer photothermal therapy in the near-infrared region using single walled carbon nanotubes
-
Zhou FF, Xing D, Ou ZM, Wu BY, Resasco DE, Chen WR. Cancer photothermal therapy in the near-infrared region using single walled carbon nanotubes. J Biomed Opt 2009;14:021009.
-
(2009)
J Biomed Opt
, vol.14
, pp. 021009
-
-
Zhou, F.F.1
Xing, D.2
Ou, Z.M.3
Wu, B.Y.4
Resasco, D.E.5
Chen, W.R.6
-
129
-
-
53049104252
-
Drug delivery with carbon nanotubes for in vivo cancer treatment
-
Liu Z, Chen K, Davis C, Sherlock S, Cao QZ, Chen XY, et al. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 2008;68:6652-60.
-
(2008)
Cancer Res
, vol.68
, pp. 6652-6660
-
-
Liu, Z.1
Chen, K.2
Davis, C.3
Sherlock, S.4
Cao, Q.Z.5
Chen, X.Y.6
-
130
-
-
70349992194
-
Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy
-
Liu Z, Fan AC, Rakhra K, Sherlock S, Goodwin A, Chen XY, et al. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew Chem Int Ed 2009;48:7668-72.
-
(2009)
Angew Chem Int Ed
, vol.48
, pp. 7668-7672
-
-
Liu, Z.1
Fan, A.C.2
Rakhra, K.3
Sherlock, S.4
Goodwin, A.5
Chen, X.Y.6
-
131
-
-
62149120874
-
Photoacoustic molecular imaging with antibody functionalized single walled carbon nanotubes for early diagnosis of tumor
-
Xiang LZ, Yuan Y, Xing D, Ou ZM, Yang SH, Zhou FF. Photoacoustic molecular imaging with antibody functionalized single walled carbon nanotubes for early diagnosis of tumor. J Biomed Opt 2009;14:021008.
-
(2009)
J Biomed Opt
, vol.14
, pp. 021008
-
-
Xiang, L.Z.1
Yuan, Y.2
Xing, D.3
Ou, Z.M.4
Yang, S.H.5
Zhou, F.F.6
-
132
-
-
63449106550
-
Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery
-
Bhirde AA, Patel V, Gavard J, Zhang GF, Sousa AA, Masedunskas A, et al. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 2009;3:307-16.
-
(2009)
ACS Nano
, vol.3
, pp. 307-316
-
-
Bhirde, A.A.1
Patel, V.2
Gavard, J.3
Zhang, G.F.4
Sousa, A.A.5
Masedunskas, A.6
|