메뉴 건너뛰기




Volumn 21, Issue 1, 2013, Pages 125-140

Bayesian metric multidimensional scaling

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84872374926     PISSN: 10471987     EISSN: 14764989     Source Type: Journal    
DOI: 10.1093/pan/mps039     Document Type: Article
Times cited : (32)

References (44)
  • 1
    • 84872404978 scopus 로고    scopus 로고
    • A method of linking surveys using affective signature with an application to ethnic groups in the U.S.
    • eds. Peter Enns and Christopher Wlezien. New York: Russell Sage
    • Abrajano, Marisa, and Keith T. Poole. 2011. A method of linking surveys using affective signature with an application to ethnic groups in the U.S. In Who Gets Represented, eds. Peter Enns and Christopher Wlezien. New York: Russell Sage.
    • (2011) Who Gets Represented
    • Abrajano, M.1    Poole, K.T.2
  • 2
    • 84926126044 scopus 로고    scopus 로고
    • A unified theory of party competition: A cross-national analysis integrating spatial and behavioral factors
    • New York: Cambridge University Press
    • Adams, James, Samuel Merrill, and Bernard Grofman. 2005. A unified theory of party competition: A cross-national analysis integrating spatial and behavioral factors. New York: Cambridge University Press.
    • (2005)
    • Adams, J.1    Merrill, S.2    Grofman, B.3
  • 3
    • 84872390368 scopus 로고    scopus 로고
    • Replication data for: Bayesian Metric Multidimensional Scaling
    • IQSS Dataverse Network [Distributor] V1 [Version].
    • Bakker, Ryan, and Keith T. Poole. 2012. Replication data for: Bayesian Metric Multidimensional Scaling. http://hdl.handle.net/1902.1/18965 IQSS Dataverse Network [Distributor] V1 [Version]. Also available at http://voteview.com/Bakker_Poole_Bayesian_MDS.htm.
    • (2012)
    • Bakker, R.1    Poole, K.T.2
  • 4
    • 0034340414 scopus 로고    scopus 로고
    • The little engines that could: Modeling the performance of World Wide Web search engines
    • Bradlow, Eric T., and David C. Schmittlein. 2000. The little engines that could: Modeling the performance of World Wide Web search engines. Marketing Science 19(1):43-62.
    • (2000) Marketing Science , vol.19 , Issue.1 , pp. 43-62
    • Bradlow, E.T.1    Schmittlein, D.C.2
  • 5
    • 0010143364 scopus 로고
    • Traits versus issues: Factor versus ideal-point analysis of candidate thermometer ratings
    • Brady, Henry. 1990. Traits versus issues: Factor versus ideal-point analysis of candidate thermometer ratings. Political Analysis 2:97-129.
    • (1990) Political Analysis , vol.2 , pp. 97-129
    • Brady, H.1
  • 6
    • 0003218169 scopus 로고
    • A statistical multidimensional scaling method based on the spatial theory of voting
    • ed. P.C. Wang. New York: Academic Press
    • Cahoon, Lawrence S., Melvin J. Hinich, and Peter C. Ordeshook. 1978. A statistical multidimensional scaling method based on the spatial theory of voting. In Graphical Representation of Multivariate Data, ed. P.C. Wang. New York: Academic Press.
    • (1978) Graphical Representation of Multivariate Data
    • Cahoon, L.S.1    Hinich, M.J.2    Ordeshook, P.C.3
  • 7
    • 3042802228 scopus 로고    scopus 로고
    • The statistical analysis of roll call data: A unified approach
    • Clinton, Joshua D., Simon D. Jackman, and Douglas Rivers. 2004. The statistical analysis of roll call data: A unified approach. American Political Science Review 98:355-70.
    • (2004) American Political Science Review , vol.98 , pp. 355-370
    • Clinton, J.D.1    Jackman, S.D.2    Rivers, D.3
  • 8
    • 0039305819 scopus 로고
    • Applications of convex analysis to multidimensional scaling
    • eds. J.R. Barra, F. Brodeau, G. Romier, and B. van Cutsem, Amsterdam, The Netherlands: North-Holland
    • De Leeuw, Jan. 1977. Applications of convex analysis to multidimensional scaling. In Recent Developments in Statistics, eds. J.R. Barra, F. Brodeau, G. Romier, and B. van Cutsem, 133-45. Amsterdam, The Netherlands: North-Holland.
    • (1977) Recent Developments in Statistics , pp. 133-145
    • De Leeuw, J.1
  • 9
    • 0003165345 scopus 로고
    • Convergence of the majorization method for multidimensional scaling
    • De Leeuw, Jan. 1988. Convergence of the majorization method for multidimensional scaling. Journal of Classification 5:163-80.
    • (1988) Journal of Classification , vol.5 , pp. 163-180
    • De Leeuw, J.1
  • 10
    • 0002810509 scopus 로고
    • Convergence of correction-matrix algorithms for multidimensional scaling
    • eds. J.C. Lingoes, E.E. Roskam, and I. Borg. Ann Arbor, MI: Mathesis Press
    • De Leeuw, Jan, and Heiser Willem. 1977. Convergence of correction-matrix algorithms for multidimensional scaling. In Geometric Representations of Relational Data, eds. J.C. Lingoes, E.E. Roskam, and I. Borg, 735-52. Ann Arbor, MI: Mathesis Press.
    • (1977) Geometric Representations of Relational Data , pp. 735-752
    • De Leeuw, J.1    Willem, H.2
  • 11
    • 70349291078 scopus 로고    scopus 로고
    • Multidimensional scaling using majorization: The R package smacof
    • de Leeuw, Jan, and P. Mair. 2009. Multidimensional scaling using majorization: The R package smacof. Journal of Statistical Software 31(3):1-30, http://www.jstatsoft.org/v31/i03/.
    • (2009) Journal of Statistical Software , vol.31 , Issue.3 , pp. 1-30
    • de Leeuw, J.1    Mair, P.2
  • 12
    • 79953204670 scopus 로고    scopus 로고
    • Deriving joint space positioning maps from consumer preference ratings
    • DeSarbo, Wayne S., Joonwook Park, and Vithala R. Rao. 2011. Deriving joint space positioning maps from consumer preference ratings. Marketing Letters 22(1):1-14.
    • (2011) Marketing Letters , vol.22 , Issue.1 , pp. 1-14
    • DeSarbo, W.S.1    Park, J.2    Rao, V.R.3
  • 13
    • 0000802374 scopus 로고
    • The approximation of one matrix by another of lower rank
    • Eckart, Carl H., and Gale Young. 1936. The approximation of one matrix by another of lower rank. Psychometrika 1:211-8.
    • (1936) Psychometrika , vol.1 , pp. 211-218
    • Eckart, C.H.1    Young, G.2
  • 14
    • 85015469267 scopus 로고
    • The Spatial Theory of Voting
    • New York: Cambridge University Press
    • Enelow, James M., and Melvin J. Hinich. 1984. The Spatial Theory of Voting. New York: Cambridge University Press.
    • (1984)
    • Enelow, J.M.1    Hinich, M.J.2
  • 15
    • 78649433078 scopus 로고    scopus 로고
    • A Bayesian vector multidimensional scaling procedure for the analysis of ordered preference data
    • Fong, Duncan K. H., Wayne S. DeSarbo, Joonwook Park, and Crystal J. Scott. 2010. A Bayesian vector multidimensional scaling procedure for the analysis of ordered preference data. Journal of the American Statistical Association 105(490):482-92.
    • (2010) Journal of the American Statistical Association , vol.105 , Issue.490 , pp. 482-492
    • Fong, D.K.H.1    DeSarbo, W.S.2    Park, J.3    Scott, C.J.4
  • 16
    • 80053162995 scopus 로고    scopus 로고
    • A latent space model for rank data
    • Statistical Network Analysis: Models, Issues, and New Directions: Lecture Notes in Computer Science. New York: Springer
    • Gormley, Isobel C., and Thomas B. Murphy. 2006. A latent space model for rank data. Statistical Network Analysis: Models, Issues, and New Directions: Lecture Notes in Computer Science. New York: Springer.
    • (2006)
    • Gormley, I.C.1    Murphy, T.B.2
  • 17
    • 29644439337 scopus 로고    scopus 로고
    • A new method for statistical multidimensional unfolding
    • Hinich, Melvin J. 2005. A new method for statistical multidimensional unfolding. Communications in Statistics-Theory and Methods 34:2299-310.
    • (2005) Communications in Statistics-Theory and Methods , vol.34 , pp. 2299-2310
    • Hinich, M.J.1
  • 19
    • 0009224362 scopus 로고
    • Unfolding the party identification scale: Improving the measurement an important concept
    • Jacoby, William G. 1982. Unfolding the party identification scale: Improving the measurement an important concept. Political Methodology 8:33-60.
    • (1982) Political Methodology , vol.8 , pp. 33-60
    • Jacoby, W.G.1
  • 20
    • 0041654220 scopus 로고
    • Multidimensional scaling by optimizing a goodness of fit to a nonmetric hypothesis
    • Kruskal, Joseph B. 1964a. Multidimensional scaling by optimizing a goodness of fit to a nonmetric hypothesis. Psychometrika 29:1-27.
    • (1964) Psychometrika , vol.29 , pp. 1-27
    • Kruskal, J.B.1
  • 21
    • 24944533365 scopus 로고
    • Nonmetric multidimensional scaling: A numerical method
    • Kruskal, Joseph B. 1964b. Nonmetric multidimensional scaling: A numerical method. Psychometrika 29:115-29.
    • (1964) Psychometrika , vol.29 , pp. 115-129
    • Kruskal, J.B.1
  • 22
    • 33646887390 scopus 로고
    • On the limited memory BFGS method
    • Liu, Dong C., and Jorge Nocedal. 1989. On the limited memory BFGS method. Mathematical Programming 45(1-3):503-28.
    • (1989) Mathematical Programming , vol.45 , Issue.1-3 , pp. 503-528
    • Liu, D.C.1    Nocedal, J.2
  • 23
    • 0009861231 scopus 로고    scopus 로고
    • Estimating legislators' preferred points
    • Londregan, John B. 2000. Estimating legislators' preferred points. Political Analysis 8(1):35-56.
    • (2000) Political Analysis , vol.8 , Issue.1 , pp. 35-56
    • Londregan, J.B.1
  • 24
    • 0038097605 scopus 로고    scopus 로고
    • Dynamic ideal point estimation via Markov chain Monte Carlo for the U.S. Supreme Court, 1953-1999
    • Martin, Andrew D., and Kevin M. Quinn. 2002. Dynamic ideal point estimation via Markov chain Monte Carlo for the U.S. Supreme Court, 1953-1999. Political Analysis 10:134-53.
    • (2002) Political Analysis , vol.10 , pp. 134-153
    • Martin, A.D.1    Quinn, K.M.2
  • 25
    • 0003649259 scopus 로고    scopus 로고
    • A unified theory of voting: Directional and proximity spatial models
    • New York: Cambridge University Press
    • Merrill, Samuel, III, and Bernard Grofman. 1999. A unified theory of voting: Directional and proximity spatial models. New York: Cambridge University Press.
    • (1999)
    • Merrill III, S.1    Grofman, B.2
  • 26
    • 84899015839 scopus 로고    scopus 로고
    • Combining dimensions and features in similarity-based representations
    • eds. S. Becker, S. Thrun, and K. Obermayer. Cambridge, MA: MIT Press
    • Navarro, Daniel J., and Michael D. Lee. 2003. Combining dimensions and features in similarity-based representations. In Advances in Neural Information Processing Systems, eds. S. Becker, S. Thrun, and K. Obermayer, Vol. 15, 59-66. Cambridge, MA: MIT Press.
    • (2003) Advances in Neural Information Processing Systems , vol.15 , pp. 59-66
    • Navarro, D.J.1    Lee, M.D.2
  • 27
    • 1642370803 scopus 로고    scopus 로고
    • Slice sampling
    • Neal, Radford M. 2003. Slice sampling. Annals of Statistics 31(3):705-67.
    • (2003) Annals of Statistics , vol.31 , Issue.3 , pp. 705-767
    • Neal, R.M.1
  • 28
    • 0000238336 scopus 로고
    • A simplex method for function minimization
    • Nelder, John A., and Roger Mead. 1965. A simplex method for function minimization. Computer Journal 7:308-13.
    • (1965) Computer Journal , vol.7 , pp. 308-313
    • Nelder, J.A.1    Mead, R.2
  • 29
    • 0442280664 scopus 로고    scopus 로고
    • Bayesian multidimensional scaling and choice of dimension
    • Oh, Man-Suk, and Adrian E. Raftery. 2001. Bayesian multidimensional scaling and choice of dimension. Journal of the American Statistical Association 96(455):1031-44.
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.455 , pp. 1031-1044
    • Oh, M.-S.1    Raftery, A.E.2
  • 30
    • 78650706379 scopus 로고    scopus 로고
    • Bayesian multidimensional scaling for the estimation of a Minkowski exponent
    • Okada, Kensuke, and Kazuo Shigemasu. 2010. Bayesian multidimensional scaling for the estimation of a Minkowski exponent. Behavior Research Methods 42(4):899-905.
    • (2010) Behavior Research Methods , vol.42 , Issue.4 , pp. 899-905
    • Okada, K.1    Shigemasu, K.2
  • 31
    • 52949133407 scopus 로고    scopus 로고
    • A hierarchical Bayesian multidimensional scaling methodology for accommodating both structural and preference heterogeneity
    • Park, Joonwook, Wayne S. DeSarbo, and John Liechty. 2008. A hierarchical Bayesian multidimensional scaling methodology for accommodating both structural and preference heterogeneity. Psychometrika 73(3):451-72.
    • (2008) Psychometrika , vol.73 , Issue.3 , pp. 451-472
    • Park, J.1    DeSarbo, W.S.2    Liechty, J.3
  • 32
    • 84934752778 scopus 로고
    • U.S. presidential elections 1968-1980: A spatial analysis
    • Poole, Keith T., and Howard Rosenthal. 1984. U.S. presidential elections 1968-1980: A spatial analysis. American Journal of Political Science 28:282-312.
    • (1984) American Journal of Political Science , vol.28 , pp. 282-312
    • Poole, K.T.1    Rosenthal, H.2
  • 33
    • 0003392125 scopus 로고    scopus 로고
    • Congress: A political-economic history of roll call voting
    • New York: Oxford University Press
    • Poole, Keith T., and Howard Rosenthal. 1997. Congress: A political-economic history of roll call voting. New York: Oxford University Press.
    • (1997)
    • Poole, K.T.1    Rosenthal, H.2
  • 34
    • 79953285528 scopus 로고    scopus 로고
    • Reconsidering the great compromise at the federal convention of 1787: Deliberation and agenda effects on the senate and slavery
    • Pope, Jeremy C., and Shawn A. Treier. 2011. Reconsidering the great compromise at the federal convention of 1787: Deliberation and agenda effects on the senate and slavery. American Journal of Political Science 55:289-306.
    • (2011) American Journal of Political Science , vol.55 , pp. 289-306
    • Pope, J.C.1    Treier, S.A.2
  • 35
    • 0001258795 scopus 로고
    • On search directions for minimization algorithms
    • Powell, Michael J. D. 1973. On search directions for minimization algorithms. Mathematical Programming 4:193-201.
    • (1973) Mathematical Programming , vol.4 , pp. 193-201
    • Powell, M.J.D.1
  • 36
    • 0001584937 scopus 로고
    • A procedure for ordering object pairs consistent with the multidimensional unfolding model
    • Rabinowitz, George. 1976. A procedure for ordering object pairs consistent with the multidimensional unfolding model. Psychometrika 45:349-73.
    • (1976) Psychometrika , vol.45 , pp. 349-373
    • Rabinowitz, G.1
  • 37
    • 0010596288 scopus 로고
    • On metric multidimensional unfolding
    • Schönemann, Peter H. 1970. On metric multidimensional unfolding. Psychometrika 35:349-66.
    • (1970) Psychometrika , vol.35 , pp. 349-366
    • Schönemann Peter, H.1
  • 38
    • 34250926052 scopus 로고
    • The analysis of proximities: Multidimensional scaling with an unknown distance function. I
    • Shepard, Roger N. 1962a. The analysis of proximities: Multidimensional scaling with an unknown distance function. I. Psychometrika 27:125-39.
    • (1962) Psychometrika , vol.27 , pp. 125-139
    • Shepard, R.N.1
  • 39
    • 34250920725 scopus 로고
    • The analysis of proximities: Multidimensional scaling with an unknown distance function. II
    • Shepard, Roger N. 1962b. The analysis of proximities: Multidimensional scaling with an unknown distance function. II. Psychometrika 27:219-46.
    • (1962) Psychometrika , vol.27 , pp. 219-246
    • Shepard, R.N.1
  • 40
    • 84950351930 scopus 로고
    • Multidimensional scaling: I. Theory and method
    • Torgerson, Warren S. 1952. Multidimensional scaling: I. Theory and method. Psychometrika 17:401-19.
    • (1952) Psychometrika , vol.17 , pp. 401-419
    • Torgerson, W.S.1
  • 41
    • 0004159405 scopus 로고
    • Theory and methods of scaling
    • New York: Wiley
    • Torgerson, Warren S. 1958. Theory and methods of scaling. New York: Wiley.
    • (1958)
    • Torgerson, W.S.1
  • 42
    • 0010815822 scopus 로고
    • A conjugate gradient algorithm for the multidimensional analysis of preference data
    • Wang, Ming-Mei, Peter H. Schonemann, and Jerrold G. Rusk. 1975. A conjugate gradient algorithm for the multidimensional analysis of preference data. Multivariate Behavioral Research 10:45-80.
    • (1975) Multivariate Behavioral Research , vol.10 , pp. 45-80
    • Wang, M.-M.1    Schonemann, P.H.2    Rusk, J.G.3
  • 44
    • 0002361037 scopus 로고
    • Discussion of a set of points in terms of their mutual distances
    • Young, Gale, and Alston S. Householder. 1938. Discussion of a set of points in terms of their mutual distances. Psychometrika 3:19-22.
    • (1938) Psychometrika , vol.3 , pp. 19-22
    • Young, G.1    Householder, A.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.