-
1
-
-
0001707390
-
Local fractional Fokker-Planck equation
-
K.M. Kolwankar, A. D Gangal, Local fractional Fokker-Planck equation, Phys. Rev. Lett. 80, 214-21 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 214-221
-
-
Kolwankar, K.M.1
Gangal, A.D.2
-
2
-
-
0032672778
-
Homotopy perturbation technique
-
J.H. He, Homotopy perturbation technique, Comput. Method. Appl. Mech. Eng. 178, 257-62 (1999).
-
(1999)
Comput. Method. Appl. Mech. Eng.
, vol.178
, pp. 257-262
-
-
He, J.H.1
-
4
-
-
34247395044
-
Homotopy perturbation method for nonlinear partial differential equations of fractional order
-
S. Moman, Z. Odibat, Homotopy perturbation method for nonlinear partial differential equations of fractional order, Phys. Lett. A 365, 345-50 (2007).
-
(2007)
Phys. Lett. A
, vol.365
, pp. 345-350
-
-
Moman, S.1
Odibat, Z.2
-
5
-
-
35348938590
-
Solving fractional diffusion and wave equations by modified homotopy perturbation method
-
H. Jafari, S. Momani, Solving fractional diffusion and wave equations by modified homotopy perturbation method, Phys. Lett. A 370, 388-396 (2007).
-
(2007)
Phys. Lett. A
, vol.370
, pp. 388-396
-
-
Jafari, H.1
Momani, S.2
-
6
-
-
61449220353
-
Application of the homotopy perturbation method to coupled system of partial differential equations with time fractional derivatives
-
Z.Z. Ganji, D.D. Ganji, Application of the homotopy perturbation method to coupled system of partial differential equations with time fractional derivatives, Topol Methods Nonlinear Anal. 31, 341-348 (2008).
-
(2008)
Topol Methods Nonlinear Anal.
, vol.31
, pp. 341-348
-
-
Ganji, Z.Z.1
Ganji, D.D.2
-
7
-
-
77951248176
-
Analytical approach to fractional partial differential equations in fluid mechanics by means of the homotopy perturbation method
-
A. Yildirim, Analytical approach to fractional partial differential equations in fluid mechanics by means of the homotopy perturbation method, Int. J. Numer. Method. H. 20, 186-200 (2010).
-
(2010)
Int. J. Numer. Method. H.
, vol.20
, pp. 186-200
-
-
Yildirim, A.1
-
8
-
-
80054719561
-
Homotopy perturbation method for solving a system of Schrodinger-Korteweg-de Vries Equations
-
A.K. Golmankhaneh, D. Baleanu, Homotopy perturbation method for solving a system of Schrodinger-Korteweg-de Vries Equations, Rom. Rep. Phys. 63, 609-623 (2011).
-
(2011)
Rom. Rep. Phys.
, vol.63
, pp. 609-623
-
-
Golmankhaneh, A.K.1
Baleanu, D.2
-
9
-
-
79959998825
-
On fractional coupled Whitham-Broer-Kaup equations
-
A. Kadem, D. Baleanu, On fractional coupled Whitham-Broer-Kaup equations, Rom. J. Phys. 56, 629-635 (2011).
-
(2011)
Rom. J. Phys.
, vol.56
, pp. 629-635
-
-
Kadem, A.1
Baleanu, D.2
-
10
-
-
79960028808
-
Lyapunov-Krasovskii Stability theorem for fractional systems with delay
-
D. Baleanu, N.A. Ranjbar, R.S. J Sadati, et al., Lyapunov-Krasovskii Stability theorem for fractional systems with delay, Rom. J. Phys. 56, 636-643 (2011).
-
(2011)
Rom. J. Phys.
, vol.56
, pp. 636-643
-
-
Baleanu, D.1
Ranjbar, N.A.2
Sadati, R.S.J.3
-
11
-
-
79957644991
-
Fractional dimensional harmonic oscillator
-
R. Eid, S.I. Mushih, D. Baleanu, et al., Fractional dimensional harmonic oscillator, Rom. J. Phys. 56, 323-331 (2011).
-
(2011)
Rom. J. Phys.
, vol.56
, pp. 323-331
-
-
Eid, R.1
Mushih, S.I.2
Baleanu, D.3
-
12
-
-
79957633614
-
Homotopy perturbation method for the coupled fractional Lotka-Volterra equations
-
A. Kadem, D. Baleanu, Homotopy perturbation method for the coupled fractional Lotka-Volterra equations, Rom. J. Phys. 56, 332-338 (2011).
-
(2011)
Rom. J. Phys.
, vol.56
, pp. 332-338
-
-
Kadem, A.1
Baleanu, D.2
-
13
-
-
79953886340
-
On fractional Hamiltonian systems possessing first-class constraints within Caputo derivatives
-
D. Baleanu, S.I. Muslih, E.M. Rabei et al., On fractional Hamiltonian systems possessing first-class constraints within Caputo derivatives, Rom. Rep. Phys. 63, 3-8 (2011).
-
(2011)
Rom. Rep. Phys.
, vol.63
, pp. 3-8
-
-
Baleanu, D.1
Muslih, S.I.2
Rabei, E.M.3
-
14
-
-
84868674070
-
On the Mittag-Leffler stability of q-fractional nonlinear dynamical systems
-
F. Jarad, T. Abdeljawad, E. Gündoǧdu, D. Baleanu, On the Mittag-Leffler stability of q-fractional nonlinear dynamical systems, Proc. Romanian Acad. A 12, 309-314 (2011).
-
(2011)
Proc. Romanian Acad. A
, vol.12
, pp. 309-314
-
-
Jarad, F.1
Abdeljawad, T.2
Gündoǧdu, E.3
Baleanu, D.4
-
15
-
-
33745742268
-
Modified Riemann-Liouville derivative and fractional Taylor series of non-differentiable functions further results
-
G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of non-differentiable functions further results, Comput. Math. Appl. 51, 1367-1376 (2006).
-
(2006)
Comput. Math. Appl.
, vol.51
, pp. 1367-1376
-
-
Jumarie, G.1
-
16
-
-
70350325151
-
On the local fractional derivative
-
Y. Chen, Y. Yan, K.W. Zhang, On the local fractional derivative, J. Math. Anal. Appl. 362, 17-33 (2010).
-
(2010)
J. Math. Anal. Appl.
, vol.362
, pp. 17-33
-
-
Chen, Y.1
Yan, Y.2
Zhang, K.W.3
-
17
-
-
0036028181
-
A fractional calculus approach to the description of stress and strain localization in fractal media
-
A. Carpinteri, P. Cornetti, A fractional calculus approach to the description of stress and strain localization in fractal media, Chaos Solitons Fract. 13, 85-94 (2002).
-
(2002)
Chaos Solitons Fract.
, vol.13
, pp. 85-94
-
-
Carpinteri, A.1
Cornetti, P.2
-
18
-
-
84872314453
-
New trends in variation iteration method
-
G.C. Wu, New trends in variation iteration method, Commun. Frac. Calc. 2, 49-76 (2011).
-
(2011)
Commun. Frac. Calc.
, vol.2
, pp. 49-76
-
-
Wu, G.C.1
-
19
-
-
0030671988
-
Holder exponents of irregular signals and local fractional derivatives
-
K.M. Kolwankar, A.D. Gangal, Holder exponents of irregular signals and local fractional derivatives, Pramana-J. Phys. 48, 49-68 (1997).
-
(1997)
Pramana-J. Phys.
, vol.48
, pp. 49-68
-
-
Kolwankar, K.M.1
Gangal, A.D.2
-
20
-
-
0040655648
-
Fractional differentiability of nowhere differentiable functions and dimensions
-
K.M. Kolwankar, A.D. Gangal, Fractional differentiability of nowhere differentiable functions and dimensions, Chaos, 6, 505-513 (1996).
-
(1996)
Chaos
, vol.6
, pp. 505-513
-
-
Kolwankar, K.M.1
Gangal, A.D.2
-
21
-
-
12344303297
-
Decomposition of Lebesgue-Cantor devil's staircase
-
K.M. Kolwankar, Decomposition of Lebesgue-Cantor devil's staircase, Fractals, 12, 375-380 (2004).
-
(2004)
Fractals
, vol.12
, pp. 375-380
-
-
Kolwankar, K.M.1
-
22
-
-
77953478991
-
Fractional variational iteration method and its application
-
G.C. Wu, E.W.M. Lee, Fractional variational iteration method and its application, Phys. Lett. A 374, 2506-2509 (2010).
-
(2010)
Phys. Lett. A
, vol.374
, pp. 2506-2509
-
-
Wu, G.C.1
Lee, E.W.M.2
-
23
-
-
80053133951
-
Approximate solution of fractional differential equations with uncertainty
-
Z.G. Deng, G.C. Wu, Approximate solution of fractional differential equations with uncertainty, Rom. J. Phys. 56, 868-872 (2011).
-
(2011)
Rom. J. Phys.
, vol.56
, pp. 868-872
-
-
Deng, Z.G.1
Wu, G.C.2
-
24
-
-
80051580540
-
Adomian decomposition method for non-smooth initial value problems
-
G.C. Wu, Adomian decomposition method for non-smooth initial value problems, Math. Comput. Model. 54, 2104-2108 (2011).
-
(2011)
Math. Comput. Model.
, vol.54
, pp. 2104-2108
-
-
Wu, G.C.1
-
25
-
-
80053143209
-
Adomian decomposition method and non-analytical solution of local fractional differential equations
-
G.C. Wu, Y.G. Shi, K.T. Wu, Adomian decomposition method and non-analytical solution of local fractional differential equations, Rom. J. Phys. 56, 873-880 (2011).
-
(2011)
Rom. J. Phys.
, vol.56
, pp. 873-880
-
-
Wu, G.C.1
Shi, Y.G.2
Wu, K.T.3
|