메뉴 건너뛰기




Volumn 57, Issue 9-10, 2012, Pages 1278-1284

Fractional perturbation technique of fractional differentiable functions

Author keywords

Fractal curves; Fractional differentiable functions; Perturbation technique

Indexed keywords


EID: 84872288219     PISSN: 1221146X     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (4)

References (25)
  • 1
    • 0001707390 scopus 로고    scopus 로고
    • Local fractional Fokker-Planck equation
    • K.M. Kolwankar, A. D Gangal, Local fractional Fokker-Planck equation, Phys. Rev. Lett. 80, 214-21 (1998).
    • (1998) Phys. Rev. Lett. , vol.80 , pp. 214-221
    • Kolwankar, K.M.1    Gangal, A.D.2
  • 2
    • 0032672778 scopus 로고    scopus 로고
    • Homotopy perturbation technique
    • J.H. He, Homotopy perturbation technique, Comput. Method. Appl. Mech. Eng. 178, 257-62 (1999).
    • (1999) Comput. Method. Appl. Mech. Eng. , vol.178 , pp. 257-262
    • He, J.H.1
  • 4
    • 34247395044 scopus 로고    scopus 로고
    • Homotopy perturbation method for nonlinear partial differential equations of fractional order
    • S. Moman, Z. Odibat, Homotopy perturbation method for nonlinear partial differential equations of fractional order, Phys. Lett. A 365, 345-50 (2007).
    • (2007) Phys. Lett. A , vol.365 , pp. 345-350
    • Moman, S.1    Odibat, Z.2
  • 5
    • 35348938590 scopus 로고    scopus 로고
    • Solving fractional diffusion and wave equations by modified homotopy perturbation method
    • H. Jafari, S. Momani, Solving fractional diffusion and wave equations by modified homotopy perturbation method, Phys. Lett. A 370, 388-396 (2007).
    • (2007) Phys. Lett. A , vol.370 , pp. 388-396
    • Jafari, H.1    Momani, S.2
  • 6
    • 61449220353 scopus 로고    scopus 로고
    • Application of the homotopy perturbation method to coupled system of partial differential equations with time fractional derivatives
    • Z.Z. Ganji, D.D. Ganji, Application of the homotopy perturbation method to coupled system of partial differential equations with time fractional derivatives, Topol Methods Nonlinear Anal. 31, 341-348 (2008).
    • (2008) Topol Methods Nonlinear Anal. , vol.31 , pp. 341-348
    • Ganji, Z.Z.1    Ganji, D.D.2
  • 7
    • 77951248176 scopus 로고    scopus 로고
    • Analytical approach to fractional partial differential equations in fluid mechanics by means of the homotopy perturbation method
    • A. Yildirim, Analytical approach to fractional partial differential equations in fluid mechanics by means of the homotopy perturbation method, Int. J. Numer. Method. H. 20, 186-200 (2010).
    • (2010) Int. J. Numer. Method. H. , vol.20 , pp. 186-200
    • Yildirim, A.1
  • 8
    • 80054719561 scopus 로고    scopus 로고
    • Homotopy perturbation method for solving a system of Schrodinger-Korteweg-de Vries Equations
    • A.K. Golmankhaneh, D. Baleanu, Homotopy perturbation method for solving a system of Schrodinger-Korteweg-de Vries Equations, Rom. Rep. Phys. 63, 609-623 (2011).
    • (2011) Rom. Rep. Phys. , vol.63 , pp. 609-623
    • Golmankhaneh, A.K.1    Baleanu, D.2
  • 9
    • 79959998825 scopus 로고    scopus 로고
    • On fractional coupled Whitham-Broer-Kaup equations
    • A. Kadem, D. Baleanu, On fractional coupled Whitham-Broer-Kaup equations, Rom. J. Phys. 56, 629-635 (2011).
    • (2011) Rom. J. Phys. , vol.56 , pp. 629-635
    • Kadem, A.1    Baleanu, D.2
  • 10
    • 79960028808 scopus 로고    scopus 로고
    • Lyapunov-Krasovskii Stability theorem for fractional systems with delay
    • D. Baleanu, N.A. Ranjbar, R.S. J Sadati, et al., Lyapunov-Krasovskii Stability theorem for fractional systems with delay, Rom. J. Phys. 56, 636-643 (2011).
    • (2011) Rom. J. Phys. , vol.56 , pp. 636-643
    • Baleanu, D.1    Ranjbar, N.A.2    Sadati, R.S.J.3
  • 11
    • 79957644991 scopus 로고    scopus 로고
    • Fractional dimensional harmonic oscillator
    • R. Eid, S.I. Mushih, D. Baleanu, et al., Fractional dimensional harmonic oscillator, Rom. J. Phys. 56, 323-331 (2011).
    • (2011) Rom. J. Phys. , vol.56 , pp. 323-331
    • Eid, R.1    Mushih, S.I.2    Baleanu, D.3
  • 12
    • 79957633614 scopus 로고    scopus 로고
    • Homotopy perturbation method for the coupled fractional Lotka-Volterra equations
    • A. Kadem, D. Baleanu, Homotopy perturbation method for the coupled fractional Lotka-Volterra equations, Rom. J. Phys. 56, 332-338 (2011).
    • (2011) Rom. J. Phys. , vol.56 , pp. 332-338
    • Kadem, A.1    Baleanu, D.2
  • 13
    • 79953886340 scopus 로고    scopus 로고
    • On fractional Hamiltonian systems possessing first-class constraints within Caputo derivatives
    • D. Baleanu, S.I. Muslih, E.M. Rabei et al., On fractional Hamiltonian systems possessing first-class constraints within Caputo derivatives, Rom. Rep. Phys. 63, 3-8 (2011).
    • (2011) Rom. Rep. Phys. , vol.63 , pp. 3-8
    • Baleanu, D.1    Muslih, S.I.2    Rabei, E.M.3
  • 14
    • 84868674070 scopus 로고    scopus 로고
    • On the Mittag-Leffler stability of q-fractional nonlinear dynamical systems
    • F. Jarad, T. Abdeljawad, E. Gündoǧdu, D. Baleanu, On the Mittag-Leffler stability of q-fractional nonlinear dynamical systems, Proc. Romanian Acad. A 12, 309-314 (2011).
    • (2011) Proc. Romanian Acad. A , vol.12 , pp. 309-314
    • Jarad, F.1    Abdeljawad, T.2    Gündoǧdu, E.3    Baleanu, D.4
  • 15
    • 33745742268 scopus 로고    scopus 로고
    • Modified Riemann-Liouville derivative and fractional Taylor series of non-differentiable functions further results
    • G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of non-differentiable functions further results, Comput. Math. Appl. 51, 1367-1376 (2006).
    • (2006) Comput. Math. Appl. , vol.51 , pp. 1367-1376
    • Jumarie, G.1
  • 17
    • 0036028181 scopus 로고    scopus 로고
    • A fractional calculus approach to the description of stress and strain localization in fractal media
    • A. Carpinteri, P. Cornetti, A fractional calculus approach to the description of stress and strain localization in fractal media, Chaos Solitons Fract. 13, 85-94 (2002).
    • (2002) Chaos Solitons Fract. , vol.13 , pp. 85-94
    • Carpinteri, A.1    Cornetti, P.2
  • 18
    • 84872314453 scopus 로고    scopus 로고
    • New trends in variation iteration method
    • G.C. Wu, New trends in variation iteration method, Commun. Frac. Calc. 2, 49-76 (2011).
    • (2011) Commun. Frac. Calc. , vol.2 , pp. 49-76
    • Wu, G.C.1
  • 19
    • 0030671988 scopus 로고    scopus 로고
    • Holder exponents of irregular signals and local fractional derivatives
    • K.M. Kolwankar, A.D. Gangal, Holder exponents of irregular signals and local fractional derivatives, Pramana-J. Phys. 48, 49-68 (1997).
    • (1997) Pramana-J. Phys. , vol.48 , pp. 49-68
    • Kolwankar, K.M.1    Gangal, A.D.2
  • 20
    • 0040655648 scopus 로고    scopus 로고
    • Fractional differentiability of nowhere differentiable functions and dimensions
    • K.M. Kolwankar, A.D. Gangal, Fractional differentiability of nowhere differentiable functions and dimensions, Chaos, 6, 505-513 (1996).
    • (1996) Chaos , vol.6 , pp. 505-513
    • Kolwankar, K.M.1    Gangal, A.D.2
  • 21
    • 12344303297 scopus 로고    scopus 로고
    • Decomposition of Lebesgue-Cantor devil's staircase
    • K.M. Kolwankar, Decomposition of Lebesgue-Cantor devil's staircase, Fractals, 12, 375-380 (2004).
    • (2004) Fractals , vol.12 , pp. 375-380
    • Kolwankar, K.M.1
  • 22
    • 77953478991 scopus 로고    scopus 로고
    • Fractional variational iteration method and its application
    • G.C. Wu, E.W.M. Lee, Fractional variational iteration method and its application, Phys. Lett. A 374, 2506-2509 (2010).
    • (2010) Phys. Lett. A , vol.374 , pp. 2506-2509
    • Wu, G.C.1    Lee, E.W.M.2
  • 23
    • 80053133951 scopus 로고    scopus 로고
    • Approximate solution of fractional differential equations with uncertainty
    • Z.G. Deng, G.C. Wu, Approximate solution of fractional differential equations with uncertainty, Rom. J. Phys. 56, 868-872 (2011).
    • (2011) Rom. J. Phys. , vol.56 , pp. 868-872
    • Deng, Z.G.1    Wu, G.C.2
  • 24
    • 80051580540 scopus 로고    scopus 로고
    • Adomian decomposition method for non-smooth initial value problems
    • G.C. Wu, Adomian decomposition method for non-smooth initial value problems, Math. Comput. Model. 54, 2104-2108 (2011).
    • (2011) Math. Comput. Model. , vol.54 , pp. 2104-2108
    • Wu, G.C.1
  • 25
    • 80053143209 scopus 로고    scopus 로고
    • Adomian decomposition method and non-analytical solution of local fractional differential equations
    • G.C. Wu, Y.G. Shi, K.T. Wu, Adomian decomposition method and non-analytical solution of local fractional differential equations, Rom. J. Phys. 56, 873-880 (2011).
    • (2011) Rom. J. Phys. , vol.56 , pp. 873-880
    • Wu, G.C.1    Shi, Y.G.2    Wu, K.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.