메뉴 건너뛰기




Volumn 56, Issue 7-8, 2011, Pages 868-872

Approximate solution of fractional differential equations with uncertainty

Author keywords

Fractional differential equations; Fractional variational iteration method; Modified riemann liouville derivative

Indexed keywords


EID: 80053133951     PISSN: 1221146X     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (8)

References (15)
  • 2
    • 80053142459 scopus 로고
    • Generalized Fractional Calculus and Applications, Longman Scientific & Technical, Harlow, Inc., New York
    • V. Kiryakova, Generalized Fractional Calculus and Applications, Longman Scientific & Technical, Harlow, 1994, copublished in the United States with John Wiley & Sons, Inc., New York.
    • (1994) Copublished In the United States With John Wiley & Sons
    • Kiryakova, V.1
  • 6
    • 73249139676 scopus 로고    scopus 로고
    • On the concept of solution for fractional differential equations with uncertainty
    • Ravi P. Agarwal, V. Lakshmikanthama, Juan J. Nieto, On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal., 72, 2859-2862 (2010).
    • (2010) Nonlinear Anal , vol.72 , pp. 2859-2862
    • Agarwal, R.P.1    Lakshmikanthama, V.2    Nieto, J.J.3
  • 7
    • 33745742268 scopus 로고    scopus 로고
    • Modified Riemann-Liouville derivative and fractional Taylor series of non-differentiable functions further results
    • G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of non-differentiable functions further results, Comput. Math. Appl., 51, 1367-1376 (2006).
    • (2006) Comput. Math. Appl , vol.51 , pp. 1367-1376
    • Jumarie, G.1
  • 9
    • 77950867099 scopus 로고    scopus 로고
    • A Fractional Calculus of Variations for Multiple Integrals with Application to Vibrating String
    • R. Almeida, A.B. Malinowska and D.F.M. Torres, A Fractional Calculus of Variations for Multiple Integrals with Application to Vibrating String, J. Math. Phys. 51, 033503 (2010).
    • (2010) J. Math. Phys , vol.51 , pp. 033503
    • Almeida, R.1    Malinowska, A.B.2    Torres, D.F.M.3
  • 10
    • 79953211976 scopus 로고    scopus 로고
    • Composition functionals in fractional calculus of variations
    • A.B. Malinowska, M.R.S Ammi and D.F.M Torres, Composition functionals in fractional calculus of variations, Commun. Frac. Calc. 1, 41-47 (2010)
    • (2010) Commun. Frac. Calc , vol.1 , pp. 41-47
    • Malinowska, A.B.1    Ammi, M.R.S.2    Torres, D.F.M.3
  • 11
    • 84876998028 scopus 로고    scopus 로고
    • Variational Approach for Fractional Partial Differential Equations, arXiv:1006.4999v1
    • G.C. Wu, Variational Approach for Fractional Partial Differential Equations, arXiv:1006.4999v1
    • Wu, G.C.1
  • 12
    • 79955126649 scopus 로고    scopus 로고
    • Fractional Lie Group Method for Anonymous Diffusion Equations
    • G.C. Wu, Fractional Lie Group Method for Anonymous Diffusion Equations, Commun. Frac. Calc. 1, 27-31 (2010).
    • (2010) Commun. Frac. Calc , vol.1 , pp. 27-31
    • Wu, G.C.1
  • 13
    • 77953478991 scopus 로고    scopus 로고
    • Fractional Variational Iteration Method and Its Application
    • G.C. Wu, E.W.M. Lee, Fractional Variational Iteration Method and Its Application, Phys. Lett. A, 374, 2506-2509 (2010).
    • (2010) Phys. Lett. A , vol.374 , pp. 2506-2509
    • Wu, G.C.1    Lee, E.W.M.2
  • 14
    • 84876965418 scopus 로고    scopus 로고
    • Fractional Variational Iteration Method for Fractional Nonlinear Differential Equations
    • Accepted
    • G.C. Wu, Fractional Variational Iteration Method for Fractional Nonlinear Differential Equations, Comup. Math. Appl., Accepted.
    • Comup. Math. Appl
    • Wu, G.C.1
  • 15
    • 70349212072 scopus 로고    scopus 로고
    • Laplace's transform of fractional order via the Mittag-Leffler function and modified Riemann-Liouville derivative
    • G. Jumarie, Laplace's transform of fractional order via the Mittag-Leffler function and modified Riemann-Liouville derivative, Appl. Math. Lett. 22, 1659-1664 (2009).
    • (2009) Appl. Math. Lett , vol.22 , pp. 1659-1664
    • Jumarie, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.