-
1
-
-
0040655648
-
Fractional differentiability of nowhere differentiable functions and dimensions
-
K.M. Kolwankar, A.D. Gangal, Fractional differentiability of nowhere differentiable functions and dimensions, Chaos, 6, 505-513 (1996).
-
(1996)
Chaos
, vol.6
, pp. 505-513
-
-
Kolwankar, K.M.1
Gangal, A.D.2
-
2
-
-
0030671988
-
Holder exponents of irregular signals and local fractional derivatives
-
K.M. Kolwankar, A.D. Gangal, Holder exponents of irregular signals and local fractional derivatives, Pramana. J. Phys. 48, 49-68 (1997).
-
(1997)
Pramana. J. Phys
, vol.48
, pp. 49-68
-
-
Kolwankar, K.M.1
Gangal, A.D.2
-
3
-
-
0001707390
-
Local fractional Fokker-Planck equation
-
K.M. Kolwankar, A.D. Gangal, Local fractional Fokker-Planck equation, Phys. Rev. Lett. 80, 214-21 (1998).
-
(1998)
Phys. Rev. Lett
, vol.80
, pp. 214-221
-
-
Kolwankar, K.M.1
Gangal, A.D.2
-
4
-
-
0037174280
-
Analytical approximate solutions for nonlinear fractional differential equations
-
N.T. Shawagfeh, Analytical approximate solutions for nonlinear fractional differential equations, Appl. Math. Comput. 131, 517-529 (2002).
-
(2002)
Appl. Math. Comput
, vol.131
, pp. 517-529
-
-
Shawagfeh, N.T.1
-
5
-
-
43049157795
-
Numerical solutions of coupled Burgers equations with time-space fractional derivatives
-
Y. Chen, H.L. An, Numerical solutions of coupled Burgers equations with time-space fractional derivatives, Appl. Math. Comput. 200, 87-95 (2008).
-
(2008)
Appl. Math. Comput
, vol.200
, pp. 87-95
-
-
Chen, Y.1
An, H.L.2
-
6
-
-
65049090377
-
Numerical algorithm based on Adomian decomposition for fractional differential equations
-
C.P. Li, Y. H. Wang, Numerical algorithm based on Adomian decomposition for fractional differential equations, Comput. Math. Appl. 57, 1672-1681 (2009).
-
(2009)
Comput. Math. Appl
, vol.57
, pp. 1672-1681
-
-
Li, C.P.1
Wang, Y.H.2
-
7
-
-
36549063424
-
A generalized differential transform method for linear partial differential equations of fractional order
-
Z. Odibat, S. Momani, A generalized differential transform method for linear partial differential equations of fractional order. Appl. Math. Lett. 21, 194-199 (2008).
-
(2008)
Appl. Math. Lett
, vol.21
, pp. 194-199
-
-
Odibat, Z.1
Momani, S.2
-
8
-
-
33745742268
-
Modified Riemann-Liouville derivative and fractional Taylor series of non-differentiable functions further results
-
G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of non-differentiable functions further results, Comput. Math. Appl. 51, 1367-1376 (2006).
-
(2006)
Comput. Math. Appl
, vol.51
, pp. 1367-1376
-
-
Jumarie, G.1
-
9
-
-
70350325151
-
On the local fractional derivative
-
Y. Chen, Y. Yan, K.W. Zhang, On the local fractional derivative, J. Math. Anal. Appl. 362, 17-33 (2010).
-
(2010)
J. Math. Anal. Appl
, vol.362
, pp. 17-33
-
-
Chen, Y.1
Yan, Y.2
Zhang, K.W.3
-
10
-
-
0036028181
-
A fractional calculus approach to the description of stress and strain localization in fractal media
-
A. Carpinteri, P. Cornetti, A fractional calculus approach to the description of stress and strain localization in fractal media, Chaos Solitons Fract. 13, 85-94 (2002).
-
(2002)
Chaos Solitons Fract
, vol.13
, pp. 85-94
-
-
Carpinteri, A.1
Cornetti, P.2
-
12
-
-
33845306847
-
Lagrangian mechanics of fractional order, Hamilton-Jacobi fractional PDE and Taylor's series of nondifferentiable functions
-
G. Jumarie, Lagrangian mechanics of fractional order, Hamilton-Jacobi fractional PDE and Taylor's series of nondifferentiable functions, Chaos Solitons Fract. 32, 969-987 (2007).
-
(2007)
Chaos Solitons Fract
, vol.32
, pp. 969-987
-
-
Jumarie, G.1
-
13
-
-
70349212072
-
Laplace's transform of fractional order via the Mittag-Leffler function and modified Riemann-Liouville derivative
-
G. Jumarie, Laplace's transform of fractional order via the Mittag-Leffler function and modified Riemann-Liouville derivative, Appl. Math. Lett. 22, 1659-1664 (2009).
-
(2009)
Appl. Math. Lett
, vol.22
, pp. 1659-1664
-
-
Jumarie, G.1
-
14
-
-
77950867099
-
A Fractional Calculus of Variations for Multiple Integrals with Application to Vibrating String
-
033503
-
R. Almeida, A.B. Malinowska, D. F. M. Torres, A Fractional Calculus of Variations for Multiple Integrals with Application to Vibrating String, J. Math. Phys. 51, 033503 (2010).
-
(2010)
J. Math. Phys
, vol.51
-
-
Almeida, R.1
Malinowska, A.B.2
Torres, D.F.M.3
-
15
-
-
79955126649
-
A Fractional Lie Group Method for Anomalous Diffusion Equations
-
G.C. Wu, A Fractional Lie Group Method for Anomalous Diffusion Equations, Commun. Frac. Calc. 1, 27-31(2010).
-
(2010)
Commun. Frac. Calc
, vol.1
, pp. 27-31
-
-
Wu, G.C.1
-
16
-
-
77953478991
-
Fractional Variational Iteration Method and Its Application
-
G.C. Wu, E.W.M. Lee, Fractional Variational Iteration Method and Its Application, Phys. Lett. A 374, 2506-2509 (2010).
-
(2010)
Phys. Lett. A
, vol.374
, pp. 2506-2509
-
-
Wu, G.C.1
Lee, E.W.M.2
-
17
-
-
84876965418
-
Fractional Variational Iteration Method for Fractional Nonlinear Differential Equations
-
accepted
-
G.C. Wu, Fractional Variational Iteration Method for Fractional Nonlinear Differential Equations, Comput. Math. Appl., accepted.
-
Comput. Math. Appl
-
-
Wu, G.C.1
-
18
-
-
84877004105
-
Approximate solution of fractional differential equations with uncertainty
-
accepted
-
Z.G. Deng, G.C. Wu, Approximate solution of fractional differential equations with uncertainty, Rom. J. Phys., accepted.
-
Rom. J. Phys
-
-
Deng, Z.G.1
Wu, G.C.2
-
19
-
-
0041185368
-
A review of the decomposition method in applied mathematics
-
G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl. 135, 501-544 (1988).
-
(1988)
J. Math. Anal. Appl
, vol.135
, pp. 501-544
-
-
Adomian, G.1
-
21
-
-
77949913663
-
Recurrence triangle for Adomian polynomials
-
J.S. Duan, Recurrence triangle for Adomian polynomials, Appl. Math. Comput. 216, 1235-1241 (2010);
-
(2010)
Appl. Math. Comput
, vol.216
, pp. 1235-1241
-
-
Duan, J.S.1
-
22
-
-
84877005934
-
An efficient algorithm for the multivariable Adomian polynomials
-
accepted
-
J.S. Duan, An efficient algorithm for the multivariable Adomian polynomials, Appl. Math. Comput., accepted.
-
Appl. Math. Comput
-
-
Duan, J.S.1
-
23
-
-
24944478244
-
An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method
-
S. Saha Ray, R.K. Bera, An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method, Appl. Math. Comput. 167, 561-571 (2005).
-
(2005)
Appl. Math. Comput
, vol.167
, pp. 561-571
-
-
Saha Ray, S.1
Bera, R.K.2
-
24
-
-
0018991720
-
A family of embedded Runge-Kutta formulae
-
J.R. Dormand, P.J. Prince, A family of embedded Runge-Kutta formulae, J. Comp. Appl. Math. 6, 19-26, (1980).
-
(1980)
J. Comp. Appl. Math
, vol.6
, pp. 19-26
-
-
Dormand, J.R.1
Prince, P.J.2
|