메뉴 건너뛰기




Volumn 28, Issue 7, 2010, Pages 381-390

Event extraction for systems biology by text mining the literature

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGICAL COMPONENTS; DISEASE STATE; DOWNSTREAM EFFECTS; EVENT EXTRACTION; HIGHER ORDER; OR-NETWORKS; PHYSIOLOGICAL PROPERTIES; PROTEIN-PROTEIN INTERACTIONS; SYSTEMS BIOLOGY; TEXT MINING;

EID: 77953917404     PISSN: 01677799     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tibtech.2010.04.005     Document Type: Review
Times cited : (196)

References (84)
  • 4
    • 33748431259 scopus 로고    scopus 로고
    • Automatic terminology management in biomedicine
    • Artech House Books, S. Ananiadou, J. McNaught (Eds.)
    • Ananiadou S., Nenadic G. Automatic terminology management in biomedicine. Text Mining for Biology and Biomedicine 2006, Artech House Books. S. Ananiadou, J. McNaught (Eds.).
    • (2006) Text Mining for Biology and Biomedicine
    • Ananiadou, S.1    Nenadic, G.2
  • 5
    • 33845358346 scopus 로고    scopus 로고
    • Building an abbreviation dictionary using a term recognition approach
    • Okazaki N., Ananiadou S. Building an abbreviation dictionary using a term recognition approach. Bioinformatics 2006, 22:3089-3095.
    • (2006) Bioinformatics , vol.22 , pp. 3089-3095
    • Okazaki, N.1    Ananiadou, S.2
  • 6
    • 44649194587 scopus 로고    scopus 로고
    • Normalizing biomedical terms by minimizing ambiguity and variability
    • Tsuruoka Y., et al. Normalizing biomedical terms by minimizing ambiguity and variability. BMC Bioinformatics 2008, 9(S-3):S2.
    • (2008) BMC Bioinformatics , vol.9 , Issue.3 S
    • Tsuruoka, Y.1
  • 7
    • 24644505245 scopus 로고    scopus 로고
    • Resolving abbreviations to their senses in Medline
    • Gaudan S., et al. Resolving abbreviations to their senses in Medline. Bioinformatics 2005, 21:3658-3664.
    • (2005) Bioinformatics , vol.21 , pp. 3658-3664
    • Gaudan, S.1
  • 8
    • 77949622808 scopus 로고    scopus 로고
    • Disambiguating the species of biomedical named entities using natural language parsers
    • Wang X., et al. Disambiguating the species of biomedical named entities using natural language parsers. Bioinformatics 2010, 26:661-667.
    • (2010) Bioinformatics , vol.26 , pp. 661-667
    • Wang, X.1
  • 9
    • 33344468683 scopus 로고    scopus 로고
    • Artech House Books, S. Ananiadou, J. McNaught (Eds.)
    • Text Mining for Biology and Biomedicine 2006, Artech House Books. S. Ananiadou, J. McNaught (Eds.).
    • (2006) Text Mining for Biology and Biomedicine
  • 10
    • 33751111173 scopus 로고    scopus 로고
    • Text mining and its potential applications in systems biology
    • Ananiadou S., et al. Text mining and its potential applications in systems biology. Trends Biotechnol. 2006, 24:571-579.
    • (2006) Trends Biotechnol. , vol.24 , pp. 571-579
    • Ananiadou, S.1
  • 11
    • 68249091561 scopus 로고    scopus 로고
    • Getting started in text mining: part two
    • Rzhetsky A., et al. Getting started in text mining: part two. PLoS Comput. Biol. 2009, 5:e1000411.
    • (2009) PLoS Comput. Biol. , vol.5
    • Rzhetsky, A.1
  • 12
    • 38449110656 scopus 로고    scopus 로고
    • A comparison study on algorithms of detecting long forms for short forms in biomedical text
    • Torii M., et al. A comparison study on algorithms of detecting long forms for short forms in biomedical text. BMC Bioinformatics 2007, 8(Suppl 9):S5.
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL 9
    • Torii, M.1
  • 13
    • 8444238166 scopus 로고    scopus 로고
    • Special Issue on Named Entity Recognition in Biomedicine
    • Ananiadou S.et al. eds
    • Ananiadou, S. et al. eds (2004) Special Issue on Named Entity Recognition in Biomedicine. J. Biomed. Inform. 37, 393-528.
    • (2004) J. Biomed. Inform. , vol.37 , pp. 393-528
  • 14
    • 52649147589 scopus 로고    scopus 로고
    • Nominalization and alternations in biomedical language
    • Cohen K.B., et al. Nominalization and alternations in biomedical language. PLoS ONE 2008, 3:e3158.
    • (2008) PLoS ONE , vol.3
    • Cohen, K.B.1
  • 15
    • 54949111758 scopus 로고    scopus 로고
    • FACTA: a text search engine for finding associated biomedical concepts
    • Tsuruoka Y., et al. FACTA: a text search engine for finding associated biomedical concepts. Bioinformatics 2008, 24:2559-2560.
    • (2008) Bioinformatics , vol.24 , pp. 2559-2560
    • Tsuruoka, Y.1
  • 16
    • 33751088706 scopus 로고    scopus 로고
    • Extraction of gene-disease relations from Medline using domain dictionaries and machine learning
    • Chun H.W., et al. Extraction of gene-disease relations from Medline using domain dictionaries and machine learning. Pac. Symp. Biocomput. 2006, 4-15.
    • (2006) Pac. Symp. Biocomput. , pp. 4-15
    • Chun, H.W.1
  • 17
    • 0037161731 scopus 로고    scopus 로고
    • Comparative assessment of large-scale data sets of protein-protein interactions
    • von Mering C., et al. Comparative assessment of large-scale data sets of protein-protein interactions. Nature 2002, 417:399-403.
    • (2002) Nature , vol.417 , pp. 399-403
    • von Mering, C.1
  • 18
    • 85104042765 scopus 로고    scopus 로고
    • Overview of BioNLP'09 Shared Task on Event Extraction
    • Association for Computational Linguistics
    • Kim J.-D., et al. Overview of BioNLP'09 Shared Task on Event Extraction. BioNLP 2009 Companion Volume: Shared Task on Event Extraction 2009, 1-9. Association for Computational Linguistics.
    • (2009) BioNLP 2009 Companion Volume: Shared Task on Event Extraction , pp. 1-9
    • Kim, J.-D.1
  • 19
    • 58149375832 scopus 로고    scopus 로고
    • Facts from text: can text mining help to scale-up high-quality manual curation of gene products with ontologies?
    • Winnenburg R., et al. Facts from text: can text mining help to scale-up high-quality manual curation of gene products with ontologies?. Brief Bioinform. 2008, 9:466-478.
    • (2008) Brief Bioinform. , vol.9 , pp. 466-478
    • Winnenburg, R.1
  • 20
    • 21844471754 scopus 로고    scopus 로고
    • Systematic association of genes to phenotypes by genome and literature mining
    • Korbel J., et al. Systematic association of genes to phenotypes by genome and literature mining. PLoS Biol. 2005, 3:e134.
    • (2005) PLoS Biol. , vol.3
    • Korbel, J.1
  • 21
    • 63049136375 scopus 로고    scopus 로고
    • PhenoGO: an integrated resource for the multiscale mining of clinical and biological data
    • Sam L.T., et al. PhenoGO: an integrated resource for the multiscale mining of clinical and biological data. BMC Bioinformatics 2009, 10(Suppl 2):S8.
    • (2009) BMC Bioinformatics , vol.10 , Issue.SUPPL 2
    • Sam, L.T.1
  • 22
    • 46249127253 scopus 로고    scopus 로고
    • Identifying gene-disease associations using centrality on a literature mined gene-interaction network
    • Ozgur A., et al. Identifying gene-disease associations using centrality on a literature mined gene-interaction network. Bioinformatics 2008, 24:i277-285.
    • (2008) Bioinformatics , vol.24
    • Ozgur, A.1
  • 23
    • 71749121869 scopus 로고    scopus 로고
    • Construction of an annotated corpus to support biomedical information extraction
    • Thompson P., et al. Construction of an annotated corpus to support biomedical information extraction. BMC Bioinformatics 2009, 10:349.
    • (2009) BMC Bioinformatics , vol.10 , pp. 349
    • Thompson, P.1
  • 24
    • 59549091756 scopus 로고    scopus 로고
    • Evaluating contributions of natural language parsers to protein-protein interaction extraction
    • Miyao Y., et al. Evaluating contributions of natural language parsers to protein-protein interaction extraction. Bioinformatics 2009, 25:394-400.
    • (2009) Bioinformatics , vol.25 , pp. 394-400
    • Miyao, Y.1
  • 25
    • 41549159851 scopus 로고    scopus 로고
    • Feature forest models for probabilistic HPSG parsing
    • Miyao Y., Tsujii J. Feature forest models for probabilistic HPSG parsing. Comput. Linguist. 2008, 34(1):35-80.
    • (2008) Comput. Linguist. , vol.34 , Issue.1 , pp. 35-80
    • Miyao, Y.1    Tsujii, J.2
  • 26
    • 55449101991 scopus 로고    scopus 로고
    • Defrosting the digital library: bibliographic tools for the next generation web
    • Hull D., et al. Defrosting the digital library: bibliographic tools for the next generation web. PLoS Comput. Biol. 2008, 4:e1000204.
    • (2008) PLoS Comput. Biol. , vol.4
    • Hull, D.1
  • 27
    • 73149083488 scopus 로고    scopus 로고
    • Calling International Rescue: knowledge lost in literature and data landslide!
    • Attwood T.K., et al. Calling International Rescue: knowledge lost in literature and data landslide!. Biochem. J. 2009, 424:317-333.
    • (2009) Biochem. J. , vol.424 , pp. 317-333
    • Attwood, T.K.1
  • 28
    • 67649089178 scopus 로고    scopus 로고
    • Visualising biological data: a semantic approach to tool and database integration
    • Pettifer S., et al. Visualising biological data: a semantic approach to tool and database integration. BMC Bioinformatics 2009, 10(Suppl 6):S19.
    • (2009) BMC Bioinformatics , vol.10 , Issue.SUPPL 6
    • Pettifer, S.1
  • 29
    • 27544448536 scopus 로고    scopus 로고
    • Implementing the iHOP concept for navigation of biomedical literature
    • Hoffmann R., Valencia A. Implementing the iHOP concept for navigation of biomedical literature. Bioinformatics 2005, 21(Suppl 2):ii252-258.
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL 2
    • Hoffmann, R.1    Valencia, A.2
  • 30
    • 70449426357 scopus 로고    scopus 로고
    • GoWeb: a semantic search engine for the life science web
    • Dietze H., Schroeder M. GoWeb: a semantic search engine for the life science web. BMC Bioinformatics 2009, 10(Suppl 10):S7.
    • (2009) BMC Bioinformatics , vol.10 , Issue.SUPPL 10
    • Dietze, H.1    Schroeder, M.2
  • 31
    • 67849119585 scopus 로고    scopus 로고
    • MedlineRanker: flexible ranking of biomedical literature
    • Fontaine J.F., et al. MedlineRanker: flexible ranking of biomedical literature. Nucleic Acids Res. 2009, 37:W141-146.
    • (2009) Nucleic Acids Res. , vol.37
    • Fontaine, J.F.1
  • 32
    • 84860536484 scopus 로고    scopus 로고
    • Semantic retrieval for the accurate identification of relational concepts in massive textbases
    • Association for Computational Linguistics
    • Miyao Y., et al. Semantic retrieval for the accurate identification of relational concepts in massive textbases. Proceedings of the 44th Annual Meeting of the Association for Computational Linguistics 2006, Vol. 2:1017-1024. Association for Computational Linguistics.
    • (2006) Proceedings of the 44th Annual Meeting of the Association for Computational Linguistics , vol.2 , pp. 1017-1024
    • Miyao, Y.1
  • 33
    • 8444232801 scopus 로고    scopus 로고
    • Improving the performance of dictionary-based approaches in protein name recognition
    • Tsuruoka Y., Tsujii J. Improving the performance of dictionary-based approaches in protein name recognition. J. Biomed. Inform. 2004, 37:461-470.
    • (2004) J. Biomed. Inform. , vol.37 , pp. 461-470
    • Tsuruoka, Y.1    Tsujii, J.2
  • 34
    • 33847294345 scopus 로고    scopus 로고
    • RelEx - relation extraction using dependency parse trees
    • Fundel K., et al. RelEx - relation extraction using dependency parse trees. Bioinformatics 2007, 23:365-371.
    • (2007) Bioinformatics , vol.23 , pp. 365-371
    • Fundel, K.1
  • 35
    • 36348990139 scopus 로고    scopus 로고
    • Frontiers of biomedical text mining: current progress
    • Zweigenbaum P., et al. Frontiers of biomedical text mining: current progress. Brief Bioinform. 2007, 8:358-375.
    • (2007) Brief Bioinform. , vol.8 , pp. 358-375
    • Zweigenbaum, P.1
  • 36
    • 37549050918 scopus 로고    scopus 로고
    • Kernel approaches for genic interaction extraction
    • Kim S.H. Kernel approaches for genic interaction extraction. Bioinformatics 2008, 24:118-126.
    • (2008) Bioinformatics , vol.24 , pp. 118-126
    • Kim, S.H.1
  • 37
    • 51049088875 scopus 로고    scopus 로고
    • Overview of the protein-protein interaction annotation extraction task of BioCreative II
    • Krallinger M., et al. Overview of the protein-protein interaction annotation extraction task of BioCreative II. Genome Biol. 2008, 9(Suppl 2):S4.
    • (2008) Genome Biol. , vol.9 , Issue.SUPPL 2
    • Krallinger, M.1
  • 38
    • 0033971642 scopus 로고    scopus 로고
    • DIP: the Database of Interacting Proteins
    • Xenarios I., et al. DIP: the Database of Interacting Proteins. Nucleic Acids Res. 2000, 28:289-291.
    • (2000) Nucleic Acids Res. , vol.28 , pp. 289-291
    • Xenarios, I.1
  • 39
    • 9144248312 scopus 로고    scopus 로고
    • IntAct: an open source molecular interaction database
    • Hermjakob H., et al. IntAct: an open source molecular interaction database. Nucleic Acids Res. 2004, 32:D452-455.
    • (2004) Nucleic Acids Res. , vol.32
    • Hermjakob, H.1
  • 40
    • 25144516911 scopus 로고    scopus 로고
    • Consolidating the set of known human protein-protein interactions in preparation for large-scale mapping of the human interactome
    • Ramani A.K., et al. Consolidating the set of known human protein-protein interactions in preparation for large-scale mapping of the human interactome. Genome Biol. 2005, 6:R40.
    • (2005) Genome Biol. , vol.6
    • Ramani, A.K.1
  • 42
    • 58149128997 scopus 로고    scopus 로고
    • 'Metabolite-likeness' as a criterion in the design and selection of pharmaceutical drug libraries
    • Dobson P.D., et al. 'Metabolite-likeness' as a criterion in the design and selection of pharmaceutical drug libraries. Drug Discov. Today 2009, 14:31-40.
    • (2009) Drug Discov. Today , vol.14 , pp. 31-40
    • Dobson, P.D.1
  • 43
    • 54249155522 scopus 로고    scopus 로고
    • Network pharmacology: the next paradigm in drug discovery
    • Hopkins A.L. Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4:682-690.
    • (2008) Nat. Chem. Biol. , vol.4 , pp. 682-690
    • Hopkins, A.L.1
  • 44
    • 0037342537 scopus 로고    scopus 로고
    • The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models
    • Hucka M., et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 2003, 19:524-531.
    • (2003) Bioinformatics , vol.19 , pp. 524-531
    • Hucka, M.1
  • 45
    • 23444439817 scopus 로고    scopus 로고
    • Using process diagrams for the graphical representation of biological networks
    • Kitano H., et al. Using process diagrams for the graphical representation of biological networks. Nat. Biotechnol. 2005, 23:961-966.
    • (2005) Nat. Biotechnol. , vol.23 , pp. 961-966
    • Kitano, H.1
  • 46
    • 65649138437 scopus 로고    scopus 로고
    • Computational modeling of biochemical networks using COPASI
    • Mendes P., et al. Computational modeling of biochemical networks using COPASI. Methods Mol. Biol. 2009, 500:17-59.
    • (2009) Methods Mol. Biol. , vol.500 , pp. 17-59
    • Mendes, P.1
  • 47
    • 33846910173 scopus 로고    scopus 로고
    • Global reconstruction of the human metabolic network based on genomic and bibliomic data
    • Duarte N.C., et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:1777-1782.
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , pp. 1777-1782
    • Duarte, N.C.1
  • 48
    • 65649099307 scopus 로고    scopus 로고
    • KiPar, a tool for systematic information retrieval regarding parameters for kinetic modelling of yeast metabolic pathways
    • Spasic I., et al. KiPar, a tool for systematic information retrieval regarding parameters for kinetic modelling of yeast metabolic pathways. Bioinformatics 2009, 25:1404-1411.
    • (2009) Bioinformatics , vol.25 , pp. 1404-1411
    • Spasic, I.1
  • 49
    • 53749085229 scopus 로고    scopus 로고
    • A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology
    • Herrgard M.J., et al. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat. Biotechnol. 2008, 26:1155-1160.
    • (2008) Nat. Biotechnol. , vol.26 , pp. 1155-1160
    • Herrgard, M.J.1
  • 50
    • 44649178742 scopus 로고    scopus 로고
    • New challenges for text mining: mapping between text and manually curated pathways
    • Oda K., et al. New challenges for text mining: mapping between text and manually curated pathways. BMC Bioinformatics 2008, 9(Suppl 3):S5.
    • (2008) BMC Bioinformatics , vol.9 , Issue.SUPPL 3
    • Oda, K.1
  • 51
    • 12144290446 scopus 로고    scopus 로고
    • GeneWays: a system for extracting, analyzing, visualizing, and integrating molecular pathway data
    • Rzhetsky A., et al. GeneWays: a system for extracting, analyzing, visualizing, and integrating molecular pathway data. J. Biomed. Inform. 2004, 37:43-53.
    • (2004) J. Biomed. Inform. , vol.37 , pp. 43-53
    • Rzhetsky, A.1
  • 52
    • 15944402798 scopus 로고    scopus 로고
    • Inferring pathways from gene lists using a literature-derived network of biological relationships
    • Rajagopalan D., Agarwal P. Inferring pathways from gene lists using a literature-derived network of biological relationships. Bioinformatics 2005, 21:788-793.
    • (2005) Bioinformatics , vol.21 , pp. 788-793
    • Rajagopalan, D.1    Agarwal, P.2
  • 53
    • 17444417880 scopus 로고    scopus 로고
    • Wnt pathway curation using automated natural language processing: combining statistical methods with partial and full parse for knowledge extraction
    • Santos C., et al. Wnt pathway curation using automated natural language processing: combining statistical methods with partial and full parse for knowledge extraction. Bioinformatics 2005, 21:1653-1658.
    • (2005) Bioinformatics , vol.21 , pp. 1653-1658
    • Santos, C.1
  • 54
    • 68149137101 scopus 로고    scopus 로고
    • Mining biological pathways using WikiPathways web services
    • Kelder T., et al. Mining biological pathways using WikiPathways web services. PLoS ONE 2009, 4:e6447.
    • (2009) PLoS ONE , vol.4
    • Kelder, T.1
  • 55
    • 54949105464 scopus 로고    scopus 로고
    • PathCase: pathways database system
    • Elliott B., et al. PathCase: pathways database system. Bioinformatics 2008, 24:2526-2533.
    • (2008) Bioinformatics , vol.24 , pp. 2526-2533
    • Elliott, B.1
  • 56
    • 58149187893 scopus 로고    scopus 로고
    • The GOA database in 2009 - an integrated gene ontology annotation resource
    • Barrell D., et al. The GOA database in 2009 - an integrated gene ontology annotation resource. Nucleic Acids Res. 2009, 37:D396-403.
    • (2009) Nucleic Acids Res. , vol.37
    • Barrell, D.1
  • 57
    • 33845442570 scopus 로고    scopus 로고
    • Evaluation of BioCreAtIvE assessment of task 2
    • Blaschke C., et al. Evaluation of BioCreAtIvE assessment of task 2. BMC Bioinformatics 2005, 6:S16.
    • (2005) BMC Bioinformatics , vol.6
    • Blaschke, C.1
  • 58
    • 40749087717 scopus 로고    scopus 로고
    • Corpus annotation for mining biomedical events from literature
    • Kim J.D., et al. Corpus annotation for mining biomedical events from literature. BMC Bioinformatics 2008, 9:10.
    • (2008) BMC Bioinformatics , vol.9 , pp. 10
    • Kim, J.D.1
  • 59
    • 56649119158 scopus 로고    scopus 로고
    • Accelerating the annotation of sparse named entities by dynamic sentence selection
    • Tsuruoka Y., et al. Accelerating the annotation of sparse named entities by dynamic sentence selection. BMC Bioinformatics 2008, 9(Suppl 11):S8.
    • (2008) BMC Bioinformatics , vol.9 , Issue.SUPPL 11
    • Tsuruoka, Y.1
  • 60
    • 33847608309 scopus 로고    scopus 로고
    • BioInfer: a corpus for information extraction in the biomedical domain
    • Pyysalo S., et al. BioInfer: a corpus for information extraction in the biomedical domain. BMC Bioinformatics 2007, 8:50.
    • (2007) BMC Bioinformatics , vol.8 , pp. 50
    • Pyysalo, S.1
  • 61
    • 4944229711 scopus 로고    scopus 로고
    • GENIA corpus - a semantically annotated corpus for bio-text mining
    • Kim J., et al. GENIA corpus - a semantically annotated corpus for bio-text mining. Bioinformatics 2003, 19(Suppl 1):i180-i182.
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL 1
    • Kim, J.1
  • 62
    • 77951600909 scopus 로고    scopus 로고
    • Event extraction with complex event classification using rich features
    • Miwa M., et al. Event extraction with complex event classification using rich features. J. Bioinform. Comput. Biol. 2010, 8:131-146.
    • (2010) J. Bioinform. Comput. Biol. , vol.8 , pp. 131-146
    • Miwa, M.1
  • 63
    • 18744396693 scopus 로고    scopus 로고
    • BioIE: extracting informative sentences from the biomedical literature
    • Divoli A., Attwood T.K. BioIE: extracting informative sentences from the biomedical literature. Bioinformatics 2005, 21:2138-2139.
    • (2005) Bioinformatics , vol.21 , pp. 2138-2139
    • Divoli, A.1    Attwood, T.K.2
  • 64
    • 12344282809 scopus 로고    scopus 로고
    • Discovering patterns to extract protein-protein interactions from full texts
    • Huang M., et al. Discovering patterns to extract protein-protein interactions from full texts. Bioinformatics 2004, 20:3604-3612.
    • (2004) Bioinformatics , vol.20 , pp. 3604-3612
    • Huang, M.1
  • 65
    • 10244245424 scopus 로고    scopus 로고
    • BioRAT: extracting biological information from full-length papers
    • Corney D.P., et al. BioRAT: extracting biological information from full-length papers. Bioinformatics 2004, 20:3206-3213.
    • (2004) Bioinformatics , vol.20 , pp. 3206-3213
    • Corney, D.P.1
  • 66
    • 34249844535 scopus 로고    scopus 로고
    • Information extraction
    • Artech House, S. Ananiadou, J. McNaught (Eds.)
    • McNaught J., Black W. Information extraction. Text Mining for Biology and Biomedicine 2006, 143-177. Artech House. S. Ananiadou, J. McNaught (Eds.).
    • (2006) Text Mining for Biology and Biomedicine , pp. 143-177
    • McNaught, J.1    Black, W.2
  • 67
    • 12344328483 scopus 로고    scopus 로고
    • Extracting gene pathway relations using a hybrid grammar: the Arizona relation parser
    • McDonald D., et al. Extracting gene pathway relations using a hybrid grammar: the Arizona relation parser. Bioinformatics 2004, 20:3370-3378.
    • (2004) Bioinformatics , vol.20 , pp. 3370-3378
    • McDonald, D.1
  • 68
    • 0036706501 scopus 로고    scopus 로고
    • Two biomedical sublanguages: a description based on the theories of Zellig Harris
    • Friedman C., et al. Two biomedical sublanguages: a description based on the theories of Zellig Harris. J. Biomed. Inform. 2002, 35:222-235.
    • (2002) J. Biomed. Inform. , vol.35 , pp. 222-235
    • Friedman, C.1
  • 69
    • 0036706385 scopus 로고    scopus 로고
    • The structure of science information
    • Harris Z. The structure of science information. J. Biomed. Inform. 2002, 35:215-221.
    • (2002) J. Biomed. Inform. , vol.35 , pp. 215-221
    • Harris, Z.1
  • 70
    • 0035236048 scopus 로고    scopus 로고
    • GENIES: a natural-language processing system for the extraction of molecular pathways from journal articles
    • Friedman C., et al. GENIES: a natural-language processing system for the extraction of molecular pathways from journal articles. Bioinformatics 2001, 17:S74-S82.
    • (2001) Bioinformatics , vol.17
    • Friedman, C.1
  • 71
    • 23344432396 scopus 로고    scopus 로고
    • Ontology-driven discourse analysis for information extraction
    • Cimiano P., et al. Ontology-driven discourse analysis for information extraction. Data Knowl. Eng. 2005, 55(1):59-83.
    • (2005) Data Knowl. Eng. , vol.55 , Issue.1 , pp. 59-83
    • Cimiano, P.1
  • 72
    • 0035236527 scopus 로고    scopus 로고
    • Event extraction from biomedical papers using a full parser
    • Yakushiji A., et al. Event extraction from biomedical papers using a full parser. Pac. Symp. Biocomput. 2001, 6:408-419.
    • (2001) Pac. Symp. Biocomput. , vol.6 , pp. 408-419
    • Yakushiji, A.1
  • 73
    • 16244423656 scopus 로고    scopus 로고
    • Comparative experiments on learning information extractors for proteins and their interactions
    • Bunescu R., et al. Comparative experiments on learning information extractors for proteins and their interactions. Artif. Intell. Med. 2005, 33:139-155.
    • (2005) Artif. Intell. Med. , vol.33 , pp. 139-155
    • Bunescu, R.1
  • 74
    • 56649091413 scopus 로고    scopus 로고
    • All-paths graph kernel for protein-protein interaction extraction with evaluation of cross-corpus learning
    • Airola A., et al. All-paths graph kernel for protein-protein interaction extraction with evaluation of cross-corpus learning. BMC Bioinformatics 2008, 9:S2.
    • (2008) BMC Bioinformatics , vol.9
    • Airola, A.1
  • 75
    • 71549135535 scopus 로고    scopus 로고
    • Protein-protein interaction extraction by leveraging multiple kernels and parsers
    • Miwa M., et al. Protein-protein interaction extraction by leveraging multiple kernels and parsers. Int. J. Med. Inf. 2009, 78(12):e39-e46.
    • (2009) Int. J. Med. Inf. , vol.78 , Issue.12
    • Miwa, M.1
  • 76
    • 51049084462 scopus 로고    scopus 로고
    • Evaluation of text-mining systems for biology: overview of the Second BioCreative community challenge
    • Krallinger M., et al. Evaluation of text-mining systems for biology: overview of the Second BioCreative community challenge. Genome Biol. 2008, 9(Suppl 2):S1.
    • (2008) Genome Biol. , vol.9 , Issue.SUPPL 2
    • Krallinger, M.1
  • 77
    • 33644959172 scopus 로고    scopus 로고
    • Metabolomics, modelling and machine learning in systems biology: towards an understanding of the languages of cells. The 2005 Theodor Bücher Lecture
    • Kell D.B. Metabolomics, modelling and machine learning in systems biology: towards an understanding of the languages of cells. The 2005 Theodor Bücher Lecture. FEBS J. 2006, 273:873-894.
    • (2006) FEBS J. , vol.273 , pp. 873-894
    • Kell, D.B.1
  • 78
    • 35649027901 scopus 로고    scopus 로고
    • The virtual human: towards a global systems biology of multiscale, distributed biochemical network models
    • Kell D.B. The virtual human: towards a global systems biology of multiscale, distributed biochemical network models. IUBMB Life 2007, 59:689-695.
    • (2007) IUBMB Life , vol.59 , pp. 689-695
    • Kell, D.B.1
  • 79
    • 64249139133 scopus 로고    scopus 로고
    • The automation of science
    • King R.D., et al. The automation of science. Science 2009, 324:85-89.
    • (2009) Science , vol.324 , pp. 85-89
    • King, R.D.1
  • 80
    • 0037545622 scopus 로고    scopus 로고
    • Generating hypotheses by discovering implicit associations in the literature: a case report of a search for new potential therapeutic uses for thalidomide
    • Weeber M., et al. Generating hypotheses by discovering implicit associations in the literature: a case report of a search for new potential therapeutic uses for thalidomide. J. Am. Med. Inform. Assoc. 2003, 10:252-259.
    • (2003) J. Am. Med. Inform. Assoc. , vol.10 , pp. 252-259
    • Weeber, M.1
  • 81
    • 0345743608 scopus 로고    scopus 로고
    • Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era
    • Kell D., Oliver S. Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. BioEssays 2004, 26:99-105.
    • (2004) BioEssays , vol.26 , pp. 99-105
    • Kell, D.1    Oliver, S.2
  • 82
    • 27744487007 scopus 로고    scopus 로고
    • Text mining and ontologies in biomedicine: making sense of raw text
    • Spasic I., et al. Text mining and ontologies in biomedicine: making sense of raw text. Brief Bioinform. 2005, 6:239-251.
    • (2005) Brief Bioinform. , vol.6 , pp. 239-251
    • Spasic, I.1
  • 83
    • 65449120792 scopus 로고    scopus 로고
    • Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases
    • Kell D.B. Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med. Genomics 2009, 2:2.
    • (2009) BMC Med. Genomics , vol.2 , pp. 2
    • Kell, D.B.1
  • 84
    • 40049110714 scopus 로고    scopus 로고
    • Carrier-mediated cellular uptake of pharmaceutical drugs: an exception or the rule? Nat
    • Dobson P.D., Kell D.B. Carrier-mediated cellular uptake of pharmaceutical drugs: an exception or the rule? Nat. Rev. Drug Discov. 2008, 7:205-220.
    • (2008) Rev. Drug Discov. , vol.7 , pp. 205-220
    • Dobson, P.D.1    Kell, D.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.