메뉴 건너뛰기




Volumn 4, Issue 11, 2012, Pages

Fast rule-based bioactivity prediction using associative classification mining

Author keywords

Associative classification mining; Bayesian; Fingerprint; Pipeline Pilot; SVM

Indexed keywords


EID: 84872194892     PISSN: None     EISSN: 17582946     Source Type: Journal    
DOI: 10.1186/1758-2946-4-29     Document Type: Article
Times cited : (19)

References (61)
  • 1
    • 0037365123 scopus 로고    scopus 로고
    • Decision forest: Combining the predictions of multiple independent decision tree models
    • Tong W, Hong H, Fang H, Xie Q, Perkins R: Decision Forest: Combining the Predictions of Multiple Independent Decision Tree Models. J Chem Inf Comput Sci 2003, 43:525
    • (2003) J Chem Inf Comput Sci , vol.43 , pp. 525
    • Tong, W.1    Hong, H.2    Fang, H.3    Xie, Q.4    Perkins, R.5
  • 2
    • 58149105628 scopus 로고    scopus 로고
    • Global bayesian models for the prioritization of antitubercular agents
    • Prathipati P, Ma NL, Keller TH: Global Bayesian Models for the Prioritization of Antitubercular Agents. J Chem Inf Model 2008, 48:2362-2370. 3. Vogt M, Godden JW, Bajorath J: Bayesian Interpretation of a Distance
    • (2008) J Chem Inf Model , vol.48 , pp. 2362-2370
    • Prathipati, P.1    Ma, N.L.2    Keller, T.H.3
  • 3
    • 33846853978 scopus 로고    scopus 로고
    • Bayesian interpretation of a distance function for navigating high-dimensional descriptor spaces
    • DOI 10.1021/ci600280b
    • Bayesian interpretation of a distance Function for Navigating High-Dimensional Descriptor Spaces. J Chem Inf Model 2007, 47:39-46 (Pubitemid 46225558)
    • (2007) Journal of Chemical Information and Modeling , vol.47 , Issue.1 , pp. 39-46
    • Vogt, M.1    Godden, J.W.2    Bajorath, J.3
  • 4
    • 58149116805 scopus 로고    scopus 로고
    • Ligand-target prediction using winnow and naive bayesian algorithms and the implications of overall performance statistics
    • Nigsch F, Bender A, Jenkins JL, Mitchell JBO: Ligand-Target Prediction Using Winnow and Naive Bayesian Algorithms and the Implications of Overall Performance Statistics. J Chem Inf Model 2008, 48:2313-2325
    • (2008) J Chem Inf Model , vol.48 , pp. 2313-2325
    • Nigsch, F.1    Bender, A.2    Jenkins, J.L.3    Mitchell, J.B.O.4
  • 6
    • 66149099982 scopus 로고    scopus 로고
    • SVM model for virtual screening of lck inhibitors
    • Liew CY, Ma XH, Liu X, Yap CW: SVM Model for Virtual Screening of Lck Inhibitors. J Chem Inf Model 2009, 49:877-885
    • (2009) J Chem Inf Model , vol.49 , pp. 877-885
    • Liew, C.Y.1    Ma, X.H.2    Liu, X.3    Yap, C.W.4
  • 7
    • 54249156505 scopus 로고    scopus 로고
    • Molecule kernels: A descriptor- and alignment-free quantitative structure-activity relationship approach
    • Mohr JA, Jain BJ, Obermayer K: Molecule Kernels: A Descriptor- and Alignment-Free Quantitative Structure-Activity Relationship Approach. J Chem Inf Model 2008, 48:1868-1881
    • (2008) J Chem Inf Model , vol.48 , pp. 1868-1881
    • Mohr, J.A.1    Jain, B.J.2    Obermayer, K.3
  • 8
    • 47349107115 scopus 로고    scopus 로고
    • Evaluation of virtual screening performance of support vector machines trained by sparsely distributed active compounds
    • Ma XH, Wang R, Yang SY, Li ZR, Xue Y, Wei YC, Low BC, Chen YZ: Evaluation of Virtual Screening Performance of Support Vector Machines Trained by Sparsely Distributed Active Compounds. J Chem Inf Model 2008, 48:1227-1237
    • (2008) J Chem Inf Model , vol.48 , pp. 1227-1237
    • Ma, X.H.1    Wang, R.2    Yang, S.Y.3    Li, Z.R.4    Xue, Y.5    Wei, Y.C.6    Low, B.C.7    Chen, Y.Z.8
  • 9
    • 37249000796 scopus 로고    scopus 로고
    • Three data mining techniques to improve lazy structure - Activity relationships for noncongeneric compounds
    • DOI 10.1021/ci600560m
    • Sommer S, Kramer S: Three Data Mining Techniques To Improve Lazy Structure-Activity Relationships for Noncongeneric Compounds. J Chem Inf Model 2007, 47:2035-2043 (Pubitemid 350275071)
    • (2007) Journal of Chemical Information and Modeling , vol.47 , Issue.6 , pp. 2035-2043
    • Sommer, S.1    Kramer, S.2
  • 11
    • 84948104699 scopus 로고    scopus 로고
    • Integrating classification and association rule mining
    • Liu B, Hsu W, Ma Y: Integrating Classification and Association Rule Mining. In KDD'98, 1998. 1998:80-86
    • (1998) KDD , vol.98 , Issue.1998 , pp. 80-86
    • Liu, B.1    Hsu, W.2    Ma, Y.3
  • 13
    • 34249687044 scopus 로고    scopus 로고
    • A review of associative classification mining
    • DOI 10.1017/S0269888907001026, PII S0269888907001026
    • Thabtah F: A review of associative classification mining. Knowl Eng Rev 2007, 22:37-65 (Pubitemid 46825798)
    • (2007) Knowledge Engineering Review , vol.22 , Issue.1 , pp. 37-65
    • Thabtah, F.1
  • 14
    • 46249123102 scopus 로고    scopus 로고
    • Microbial genotype-phenotype mapping by class association rule mining
    • DOI 10.1093/bioinformatics/btn210
    • Tamura M, D'haeseleer P: Microbial genotype-phenotype mapping by class association rule mining. Bioinformatics 2008, 24:1523-1529 (Pubitemid 351911704)
    • (2008) Bioinformatics , vol.24 , Issue.13 , pp. 1523-1529
    • Tamura, M.1    D'haeseleer, P.2
  • 15
    • 0037245822 scopus 로고    scopus 로고
    • Mining gene expression databases for association rules
    • DOI 10.1093/bioinformatics/19.1.79
    • Creighton C, Hanash S: Mining gene expression databases for association rules. Bioinformatics 2003, 19:79-86 (Pubitemid 36150183)
    • (2003) Bioinformatics , vol.19 , Issue.1 , pp. 79-86
    • Creighton, C.1    Hanash, S.2
  • 16
    • 0038313118 scopus 로고    scopus 로고
    • Strongassociation- rule mining for large-scale gene-expression data analysis: A case study on human SAGE data
    • Becquet C, Blachon S, Jeudy B, Boulicaut J-F, Gandrillon O: Strongassociation- rule mining for large-scale gene-expression data analysis: a case study on human SAGE data. Genome Biol 2002, 3:1-16
    • (2002) Genome Biol , vol.3 , pp. 1-16
    • Becquet, C.1    Blachon, S.2    Jeudy, B.3    Boulicaut, J.-F.4    Gandrillon, O.5
  • 17
    • 55749111414 scopus 로고    scopus 로고
    • GenMiner: Mining non-redundant association rules from integrated gene expression data and annotations
    • Martinez R, Pasquier N, Pasquier C: GenMiner: mining non-redundant association rules from integrated gene expression data and annotations. Bioinformatics 2008, 24:2643-2644
    • (2008) Bioinformatics , vol.24 , pp. 2643-2644
    • Martinez, R.1    Pasquier, N.2    Pasquier, C.3
  • 18
    • 64849109745 scopus 로고    scopus 로고
    • Prediction of protein-protein interaction types using association rule based classification
    • Park S, Reyes J, Gilbert D, Kim J, Kim S: Prediction of protein-protein interaction types using association rule based classification. BMC Bioinforma 2009, 10:36
    • (2009) BMC Bioinforma , vol.10 , pp. 36
    • Park, S.1    Reyes, J.2    Gilbert, D.3    Kim, J.4    Kim, S.5
  • 21
    • 79952031520 scopus 로고    scopus 로고
    • Mining significant substructure pairs for interpreting polypharmacology in drug-target network
    • Takigawa I, Tsuda K, Mamitsuka H: Mining Significant Substructure Pairs for Interpreting Polypharmacology in Drug-Target Network. PLoS One 2011, 6:e16999
    • (2011) PLoS One , vol.6
    • Takigawa, I.1    Tsuda, K.2    Mamitsuka, H.3
  • 23
    • 84880088183 scopus 로고    scopus 로고
    • Finding frequent substructures in chemical compounds
    • Dehaspe L, Toivonen H, King RD: Finding frequent substructures in chemical compounds. In KDD'98, 1998.; 1998:30-36
    • (1998) KDD , vol.98 , Issue.1998 , pp. 30-36
    • Dehaspe, L.1    Toivonen, H.2    King, R.D.3
  • 24
    • 77958077680 scopus 로고    scopus 로고
    • Frequent subgraph mining in outerplanar graphs
    • Horváth T, Ramon J, Wrobel S: Frequent subgraph mining in outerplanar graphs. Data Min Knowl Disc 2010, 21:472-508
    • (2010) Data Min Knowl Disc , vol.21 , pp. 472-508
    • Horváth, T.1    Ramon, J.2    Wrobel, S.3
  • 25
    • 11344262990 scopus 로고    scopus 로고
    • CPAR: Classification based on predictive association rules
    • Xiaoxin Yin JH: CPAR: Classification based on Predictive Association Rules. In SDM'2003, 2003
    • (2003) SDM , Issue.2003
    • Xiaoxin Yin, J.H.1
  • 26
    • 84885856050 scopus 로고    scopus 로고
    • SIAM. 2003:331-335
    • (2003) SIAM , pp. 331-335
  • 31
    • 0039253846 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation
    • Han J, Pei J, Yin Y: Mining frequent patterns without candidate generation. SIGMOD Rec 2000, 29:1-12
    • (2000) SIGMOD Rec , vol.29 , pp. 1-12
    • Han, J.1    Pei, J.2    Yin, Y.3
  • 32
    • 0033718951 scopus 로고    scopus 로고
    • Scalable algorithms for association mining
    • Zaki MJ: Scalable algorithms for association mining. IEEE Trans Knowl Data Eng 2000, 12:372-390
    • (2000) IEEE Trans Knowl Data Eng , vol.12 , pp. 372-390
    • Zaki, M.J.1
  • 33
    • 84872176332 scopus 로고    scopus 로고
    • (accessed November 13, 2011)
    • PKKB. http://cadd.suda.edu.cn/admet/downloads/hERG (accessed November 13, 2011)
    • PKKB
  • 34
    • 39749088786 scopus 로고    scopus 로고
    • HERG classification model based on a combination of support vector machine method and GRIND descriptors
    • DOI 10.1021/mp700124e
    • Li Q.,Jørgensen FS, Oprea T, Brunak S, Taboureau O: hERG Classification Model Based on a Combination of Support Vector Machine Method and GRIND Descriptors. Mol Pharm 2008, 5:117-127 (Pubitemid 351300041)
    • (2008) Molecular Pharmaceutics , vol.5 , Issue.1 , pp. 117-127
    • Li, Q.1    Jorgensen, F.S.2    Oprea, T.3    Brunak, S.4    Taboureau, O.5
  • 35
    • 84872200373 scopus 로고    scopus 로고
    • (accessed November 15, 2012)
    • WOMBAT-PK: http://www.sunsetmolecular.com/index.php?option=com- content&view=article&id=16&Itemid=11 (accessed November 15, 2012)
    • WOMBAT-PK
  • 36
    • 12144257810 scopus 로고    scopus 로고
    • Derivation and validation of toxicophores for mutagenicity prediction
    • Kazius J, McGuire R, Bursi R: Derivation and Validation of Toxicophores for Mutagenicity Prediction. J Med Chem 2004, 48:312-320
    • (2004) J Med Chem , vol.48 , pp. 312-320
    • Kazius, J.1    McGuire, R.2    Bursi, R.3
  • 37
    • 84872201377 scopus 로고    scopus 로고
    • (accessed May 20, 2011)
    • PubChem. http://pubchem.ncbi.nlm.nih.gov/ (accessed May 20, 2011)
    • PubChem
  • 38
    • 75849133755 scopus 로고    scopus 로고
    • A novel method for mining highly imbalanced high-throughput screening data in PubChem
    • Li Q., Wang Y, Bryant SH: A novel method for mining highly imbalanced high-throughput screening data in PubChem. Bioinformatics 2009, 25:3310-3316
    • (2009) Bioinformatics , vol.25 , pp. 3310-3316
    • Li, Q.1    Wang, Y.2    Bryant, S.H.3
  • 39
    • 54949110209 scopus 로고    scopus 로고
    • Developing and validating predictive decision tree models from mining chemical structural fingerprints and highthroughput screening data in PubChem
    • Han L, Wang Y, Bryant S: Developing and validating predictive decision tree models from mining chemical structural fingerprints and highthroughput screening data in PubChem. BMC Bioinforma 2008, 9:401
    • (2008) BMC Bioinforma , vol.9 , pp. 401
    • Han, L.1    Wang, Y.2    Bryant, S.3
  • 40
    • 84871977912 scopus 로고    scopus 로고
    • Accelrys. http://accelrys.com/products/pipeline-pilot/
    • Accelrys
  • 41
    • 84872196066 scopus 로고    scopus 로고
    • (accessed November 01, 2011)
    • Chemistry Development Kit, version 1.4.5. http://sourceforge.net/ projects/cdk/ files/cdk/ (accessed November 01, 2011)
    • Chemistry Development Kit version 1.4.5
  • 42
    • 84885852814 scopus 로고    scopus 로고
    • Rapid-I. http://rapid-i.com/content/view/181/190/
    • Rapid-I
  • 47
    • 34250628103 scopus 로고    scopus 로고
    • Principles of QSAR models validation: Internal and external
    • DOI 10.1002/qsar.200610151
    • Gramatica P: Principles of QSAR models validation: internal and external. QSAR Comb Sci 2007, 26:694-701 (Pubitemid 46932857)
    • (2007) QSAR and Combinatorial Science , vol.26 , Issue.5 , pp. 694-701
    • Gramatica, P.1
  • 49
    • 84872201805 scopus 로고    scopus 로고
    • (accessed Oct 03, 2012)
    • DAYLIGHT. http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html (accessed Oct 03, 2012)
    • Daylight
  • 50
    • 84885844372 scopus 로고    scopus 로고
    • Novel anti-tuberculosis drug designs by data mining for similarity in substituent substitution and structure modification
    • Bartzatt RL: Novel anti-tuberculosis drug designs by data mining for similarity in substituent substitution and structure modification. Drugs and Therapy Studies 2011, 1:57-60
    • (2011) Drugs and Therapy Studies , vol.1 , pp. 57-60
    • Bartzatt, R.L.1
  • 51
    • 62549144843 scopus 로고    scopus 로고
    • Synthesis, antituberculosis activity and 3D-SAR study of amino acid conjugates of 4-(adamantan-1-yl) group containing quinolines
    • Nayyar A, Patel SR, Shaikh M, Coutinho E, Jain R: Synthesis, antituberculosis activity and 3D-QSAR study of amino acid conjugates of 4-(adamantan-1-yl) group containing quinolines. European Journal of Medicinal Chemistry 2009, 44:2017-2029
    • (2009) European Journal of Medicinal Chemistry , vol.44 , pp. 2017-2029
    • Nayyar, A.1    Patel, S.R.2    Shaikh, M.3    Coutinho, E.4    Jain, R.5
  • 57
    • 77951766215 scopus 로고    scopus 로고
    • Knowledge-based interactive postmining of association rules using ontologies
    • Marinica C, Guillet F: Knowledge-Based Interactive Postmining of Association Rules Using Ontologies. Knowledge and Data Engineering, IEEE Transactions 2010, 22:784-797
    • (2010) Knowledge And Data Engineering IEEE Transactions , vol.22 , pp. 784-797
    • Marinica, C.1    Guillet, F.2
  • 58
    • 84870632508 scopus 로고    scopus 로고
    • accessed April 24, 2011
    • Unified Medical Language System. http://www.nlm.nih.gov/research/umls/ (accessed April 24, 2011)
    • Unified Medical Language System
  • 59
    • 84870438764 scopus 로고    scopus 로고
    • accessed March 25, 2011)
    • The Gene Ontology. http://www.geneontology.org/ (accessed March 25, 2011)
    • The Gene Ontology
  • 60
    • 84872199794 scopus 로고    scopus 로고
    • (accessed March 20, 2011)
    • ChEBI. www.ebi.ac.uk/chebi/ (accessed March 20, 2011)
    • ChEBI
  • 61
    • 80053450964 scopus 로고    scopus 로고
    • The chemical information ontology: Provenance and disambiguation for chemical data on the biological semantic web
    • Hastings J, Chepelev L, Willighagen E, Adams N, Steinbeck C, Dumontier M: The Chemical Information Ontology: Provenance and Disambiguation for Chemical Data on the Biological Semantic Web. PLoS One 2011, 6:e25513.
    • (2011) PLoS One , vol.6
    • Hastings, J.1    Chepelev, L.2    Willighagen, E.3    Adams, N.4    Steinbeck, C.5    Dumontier, M.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.