메뉴 건너뛰기




Volumn 68, Issue , 2013, Pages 286-294

Developing a predictive tropospheric ozone model for Tabriz

Author keywords

Environmental hazard; Policy; Prediction capability (MLR, ANN, GEP, ARIMA, chaos theory); Protecting the public; Tropospheric ozone

Indexed keywords

AUTOREGRESSIVE MOVING AVERAGE MODEL; CHAOS THEORY; FORECASTING; GENE EXPRESSION; LINEAR REGRESSION; NATURAL LANGUAGE PROCESSING SYSTEMS; OZONE; PUBLIC POLICY; TIME SERIES ANALYSIS; TROPOSPHERE; WIND;

EID: 84871858692     PISSN: 13522310     EISSN: 18732844     Source Type: Journal    
DOI: 10.1016/j.atmosenv.2012.11.020     Document Type: Article
Times cited : (10)

References (49)
  • 2
    • 33344475768 scopus 로고    scopus 로고
    • Contribution of anthropogenic pollutants to the increase of tropospheric ozone levels in the Oporto Metropolitan Area, Portugal since the 19th century
    • Alvim-Ferraz M.C.M., Sousa S.I.V., Pereira M.C., Martins F.G. Contribution of anthropogenic pollutants to the increase of tropospheric ozone levels in the Oporto Metropolitan Area, Portugal since the 19th century. Environmental Pollution 2006, 140(3):516-524.
    • (2006) Environmental Pollution , vol.140 , Issue.3 , pp. 516-524
    • Alvim-Ferraz, M.C.M.1    Sousa, S.I.V.2    Pereira, M.C.3    Martins, F.G.4
  • 5
    • 0032102851 scopus 로고    scopus 로고
    • Nonlinear dynamics of hourly ozone concentrations: nonparametric short term prediction
    • Chen J.L., Islam S., Biswas P. Nonlinear dynamics of hourly ozone concentrations: nonparametric short term prediction. Atmospheric Environment 1998, 32(11):1839-1848.
    • (1998) Atmospheric Environment , vol.32 , Issue.11 , pp. 1839-1848
    • Chen, J.L.1    Islam, S.2    Biswas, P.3
  • 6
    • 0031172117 scopus 로고    scopus 로고
    • Comparing neural networks and regression models for ozone forecasting
    • Comrie A.C. Comparing neural networks and regression models for ozone forecasting. Journal of the Air and Waste Management Association 1997, 47:653-663.
    • (1997) Journal of the Air and Waste Management Association , vol.47 , pp. 653-663
    • Comrie, A.C.1
  • 7
    • 84871909394 scopus 로고    scopus 로고
    • Directive 2000/60/EC: The Water Framework Directive, (accessed on October 2012).
    • Directive 2000/60/EC: The Water Framework Directive, (accessed on October 2012). http://eur-lex.europa.eu/LexUriServ/LexUriServ.do%3furi%3dCONSLEG:2000L0060:20011216:EN:PDF.
  • 8
    • 56049113721 scopus 로고    scopus 로고
    • Daily means ambient temperature prediction using artificial neural network method: a case study of Turkey
    • Dombayci O.A., Golcu M. Daily means ambient temperature prediction using artificial neural network method: a case study of Turkey. Renewable Energy 2009, 34(4):1158-1161.
    • (2009) Renewable Energy , vol.34 , Issue.4 , pp. 1158-1161
    • Dombayci, O.A.1    Golcu, M.2
  • 9
    • 10644274066 scopus 로고    scopus 로고
    • Gene expression programming in problem solving, invited tutorial of the 6th Online World Conference on Soft Computing in Industrial Applications
    • September, 2001.
    • Ferreira C., 2001a. Gene expression programming in problem solving, invited tutorial of the 6th Online World Conference on Soft Computing in Industrial Applications, September pp. 10-24, 2001.
    • (2001) , pp. 10-24
    • Ferreira, C.1
  • 10
    • 0347499408 scopus 로고    scopus 로고
    • Gene expression programming: a new adaptive algorithm for solving problems
    • Ferreira C. Gene expression programming: a new adaptive algorithm for solving problems. Complex Systems 2001, 13(2):87-129.
    • (2001) Complex Systems , vol.13 , Issue.2 , pp. 87-129
    • Ferreira, C.1
  • 11
    • 0031811720 scopus 로고    scopus 로고
    • Long-term trends in ground level ozone over the contiguous United States, 1980-1995
    • Fiore A.M., Jacob D.J., Logan J.A., Yin J.H. Long-term trends in ground level ozone over the contiguous United States, 1980-1995. Journal of Geophysical Research 1998, 103(D1):1471-1480.
    • (1998) Journal of Geophysical Research , vol.103 , Issue.D1 , pp. 1471-1480
    • Fiore, A.M.1    Jacob, D.J.2    Logan, J.A.3    Yin, J.H.4
  • 12
    • 0037054258 scopus 로고    scopus 로고
    • Development of a high-resolution nested air pollution model the numerical approach
    • Frohn L.M., Christensen J.H., Brandt J. Development of a high-resolution nested air pollution model the numerical approach. Journal of Computational Physics 2002, 179(1):68-94. http://144.206.159.178/FT/2963/77568/15157618.pdf.
    • (2002) Journal of Computational Physics , vol.179 , Issue.1 , pp. 68-94
    • Frohn, L.M.1    Christensen, J.H.2    Brandt, J.3
  • 13
    • 77950864370 scopus 로고    scopus 로고
    • Sea water level forecasting using genetic programming and comparing the performance with artificial neural networks
    • Ghorbani M.A., Khatibi R., Aytek A., Makarynskyy O., Shiri J. Sea water level forecasting using genetic programming and comparing the performance with artificial neural networks. Computers and Geosciences 2010, 36(5):620-627.
    • (2010) Computers and Geosciences , vol.36 , Issue.5 , pp. 620-627
    • Ghorbani, M.A.1    Khatibi, R.2    Aytek, A.3    Makarynskyy, O.4    Shiri, J.5
  • 14
    • 84887461957 scopus 로고    scopus 로고
    • Inter-comparison of an evolutionary programming model of suspended sediment time-series with other local models
    • Ed. Soto, S.V., ISBN 980-953-307-215-4, InTech Open Access Publisher.
    • Ghorbani, M.A., Khatibi, R., Asadi, H., Yousefi, P., 2012. Inter-comparison of an evolutionary programming model of suspended sediment time-series with other local models. Genetic Programming, Ed. Soto, S.V., ISBN 980-953-307-215-4, InTech Open Access Publisher. http://www.intechopen.com/articles/show/title/inter-comparison-of-an-evolutionary-programming-model-of-suspended-sediment-time-series-with-other-l.
    • (2012) Genetic Programming
    • Ghorbani, M.A.1    Khatibi, R.2    Asadi, H.3    Yousefi, P.4
  • 15
    • 70449405008 scopus 로고    scopus 로고
    • Neural network forecasting of air pollutants hourly concentrations using optimised temporal averages of meteorological variables and pollutant concentrations
    • Hrust L., Klaic Z.B., Krizan J., Antonic O., Hercog P. Neural network forecasting of air pollutants hourly concentrations using optimised temporal averages of meteorological variables and pollutant concentrations. Atmospheric Environment 2009, 43(35):5588-5596.
    • (2009) Atmospheric Environment , vol.43 , Issue.35 , pp. 5588-5596
    • Hrust, L.1    Klaic, Z.B.2    Krizan, J.3    Antonic, O.4    Hercog, P.5
  • 16
    • 79958845393 scopus 로고    scopus 로고
    • Time series analysis of ground level ozone in Muda Irrigation Scheme Area (MADA), Kedah
    • Ismail M. Time series analysis of ground level ozone in Muda Irrigation Scheme Area (MADA), Kedah. Journal of Sustainability Science and Management 2011, 6(1):79-88.
    • (2011) Journal of Sustainability Science and Management , vol.6 , Issue.1 , pp. 79-88
    • Ismail, M.1
  • 18
    • 84988398848 scopus 로고    scopus 로고
    • Predictability of relative humidity by two artificial intelligence techniques using noisy data from two Californian gauging stations
    • Khatibi R., Naghipour L., Ghorbani M.A., Aalami M.T. Predictability of relative humidity by two artificial intelligence techniques using noisy data from two Californian gauging stations. Journal of Neural Computing and Applications 2012, http://www.springerlink.com/content/753357127737137m/.
    • (2012) Journal of Neural Computing and Applications
    • Khatibi, R.1    Naghipour, L.2    Ghorbani, M.A.3    Aalami, M.T.4
  • 19
    • 0034739912 scopus 로고    scopus 로고
    • Neural networks and periodic components used in air quality forecasting
    • Kolehmainen M., Martikainen H., Ruuskanen J. Neural networks and periodic components used in air quality forecasting. Atmospheric Environment 2001, 35(5):815-825.
    • (2001) Atmospheric Environment , vol.35 , Issue.5 , pp. 815-825
    • Kolehmainen, M.1    Martikainen, H.2    Ruuskanen, J.3
  • 20
    • 84871893173 scopus 로고    scopus 로고
    • A satellite Conference to the 51 st ISI Session in stanbul, Turkey, Water and Statistics, Ankara-Turkey
    • Koçak K. Application of Local Prediction Model to Water Level Data 1997, A satellite Conference to the 51 st ISI Session in stanbul, Turkey, Water and Statistics, Ankara-Turkey, pp. 185-193.
    • (1997) Application of Local Prediction Model to Water Level Data , pp. 185-193
    • Koçak, K.1
  • 23
    • 0036005647 scopus 로고    scopus 로고
    • Multifractal characteristics in air pollutant concentration time series
    • Lee C.K. Multifractal characteristics in air pollutant concentration time series. Water Air Soil Pollutant 2002, 135:389-409.
    • (2002) Water Air Soil Pollutant , vol.135 , pp. 389-409
    • Lee, C.K.1
  • 24
    • 0028439541 scopus 로고
    • Estimation of the dominant degrees of freedom for air pollutant concentration data: applications to ozone measurements
    • Li I.F., Biswas P., Islam S. Estimation of the dominant degrees of freedom for air pollutant concentration data: applications to ozone measurements. Atmospheric Environment 1994, 28(9):1707-1714.
    • (1994) Atmospheric Environment , vol.28 , Issue.9 , pp. 1707-1714
    • Li, I.F.1    Biswas, P.2    Islam, S.3
  • 25
    • 33745714336 scopus 로고    scopus 로고
    • Prediction of daily maximum ozone concentrations from meteorological conditions using a two-stage neural network
    • Lu H.C., Hsieh J.C., Chang T.S. Prediction of daily maximum ozone concentrations from meteorological conditions using a two-stage neural network. Atmospheric Research 2006, 81(2):124-139.
    • (2006) Atmospheric Research , vol.81 , Issue.2 , pp. 124-139
    • Lu, H.C.1    Hsieh, J.C.2    Chang, T.S.3
  • 26
    • 84871867269 scopus 로고    scopus 로고
    • NAASQ (accessed on September 2012.)
    • NAASQ. (accessed on September 2012.). http://envinfo.com/caain/nonattainment/ozonestp.html.
  • 27
    • 38149102312 scopus 로고    scopus 로고
    • Modeling of tropospheric ozone concentrations using genetically trained multi-level cellular neural networks
    • Ozcan H.K., Bilgili E., Sahin U., Ucan O.N., Bayat C. Modeling of tropospheric ozone concentrations using genetically trained multi-level cellular neural networks. Advances in Atmospheric Sciences 2007, 24(5):907-914.
    • (2007) Advances in Atmospheric Sciences , vol.24 , Issue.5 , pp. 907-914
    • Ozcan, H.K.1    Bilgili, E.2    Sahin, U.3    Ucan, O.N.4    Bayat, C.5
  • 30
    • 79953269771 scopus 로고    scopus 로고
    • Correction methods for statistical models in tropospheric ozone forecasting
    • Pires J.C.M., Martins F.G. Correction methods for statistical models in tropospheric ozone forecasting. Atmospheric Environment 2011, 45(14):2413-2417.
    • (2011) Atmospheric Environment , vol.45 , Issue.14 , pp. 2413-2417
    • Pires, J.C.M.1    Martins, F.G.2
  • 32
    • 0030619033 scopus 로고    scopus 로고
    • Nonlinear analysis of river flow time sequences
    • Porporato A., Ridolfi L. Nonlinear analysis of river flow time sequences. Water Resources Research 1997, 33(6):1353-1367.
    • (1997) Water Resources Research , vol.33 , Issue.6 , pp. 1353-1367
    • Porporato, A.1    Ridolfi, L.2
  • 33
    • 0030303191 scopus 로고    scopus 로고
    • On the nature of air pollution dynamics in Mexico City-I. Nonlinear analysis
    • Raga G.B., Le Moyne L. On the nature of air pollution dynamics in Mexico City-I. Nonlinear analysis. Atmospheric Environment 1996, 30(23):3987-3993.
    • (1996) Atmospheric Environment , vol.30 , Issue.23 , pp. 3987-3993
    • Raga, G.B.1    Le Moyne, L.2
  • 34
    • 0025247377 scopus 로고
    • Evaluation and comparison of statistical forecast models for daily maximum ozone concentrations
    • Robeson S.M., Steyn D.G. Evaluation and comparison of statistical forecast models for daily maximum ozone concentrations. Atmospheric Environment 1990, 24(B2):303-312.
    • (1990) Atmospheric Environment , vol.24 , Issue.B2 , pp. 303-312
    • Robeson, S.M.1    Steyn, D.G.2
  • 35
    • 33748040101 scopus 로고    scopus 로고
    • Neural networks for analysing the relevance of input variables in the prediction of tropospheric ozone concentration
    • Sanchis J.G., Guerrero J.D.M., Olivas E.S., Frances J.V., Carrasco J.L., Tascon S.D.V. Neural networks for analysing the relevance of input variables in the prediction of tropospheric ozone concentration. Atmospheric Environment 2006, 40(32):6173-6180.
    • (2006) Atmospheric Environment , vol.40 , Issue.32 , pp. 6173-6180
    • Sanchis, J.G.1    Guerrero, J.D.M.2    Olivas, E.S.3    Frances, J.V.4    Carrasco, J.L.5    Tascon, S.D.V.6
  • 36
    • 0030082709 scopus 로고    scopus 로고
    • Cross-validated structure selection for neural networks
    • Schenker B., Agarwal M. Cross-validated structure selection for neural networks. Computers & Chemical Engineering 1996, 20(2):175-186.
    • (1996) Computers & Chemical Engineering , vol.20 , Issue.2 , pp. 175-186
    • Schenker, B.1    Agarwal, M.2
  • 37
    • 33745994904 scopus 로고    scopus 로고
    • Prediction of ozone concentrations in Oporto city with statistical approaches
    • Sousa S.I.V., Martins F.G., Pereira M.C., Alvim-Ferraz M.C.M. Prediction of ozone concentrations in Oporto city with statistical approaches. Chemosphere 2006, 64(7):1141-1149.
    • (2006) Chemosphere , vol.64 , Issue.7 , pp. 1141-1149
    • Sousa, S.I.V.1    Martins, F.G.2    Pereira, M.C.3    Alvim-Ferraz, M.C.M.4
  • 38
    • 33749247555 scopus 로고    scopus 로고
    • Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations
    • Sousa S.I.V., Martins F.G., Alvim-Ferraz M.C.M., Pereira M.C. Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environmental Modelling & Software 2007, 22(1):97-103.
    • (2007) Environmental Modelling & Software , vol.22 , Issue.1 , pp. 97-103
    • Sousa, S.I.V.1    Martins, F.G.2    Alvim-Ferraz, M.C.M.3    Pereira, M.C.4
  • 39
    • 0034744463 scopus 로고    scopus 로고
    • Estimating long-term population exposure to ozone in urban areas of Europe
    • Syri S., Amann M., Schopp W., Heyes C. Estimating long-term population exposure to ozone in urban areas of Europe. Environmental Pollution 2001, 113(1):59-69.
    • (2001) Environmental Pollution , vol.113 , Issue.1 , pp. 59-69
    • Syri, S.1    Amann, M.2    Schopp, W.3    Heyes, C.4
  • 40
    • 0000779360 scopus 로고
    • Detecting strange attractors in turbulence
    • Springer-Verlag, New York
    • Takens F. Detecting strange attractors in turbulence. Lectures Notes in Mathematics 1981, vol. 898:366-381. Springer-Verlag, New York.
    • (1981) Lectures Notes in Mathematics , vol.898 , pp. 366-381
    • Takens, F.1
  • 41
    • 0020968404 scopus 로고
    • Photochemical dispersion modeling: review of model concepts and applications studies
    • Tesche T.W. Photochemical dispersion modeling: review of model concepts and applications studies. Environment International 1983, 9(6):465-489.
    • (1983) Environment International , vol.9 , Issue.6 , pp. 465-489
    • Tesche, T.W.1
  • 42
    • 0034917008 scopus 로고    scopus 로고
    • Assessing relocation strategies of urban air quality monitoring stations by GA_based compromise programming
    • Tseng C.C., Chang N.B. Assessing relocation strategies of urban air quality monitoring stations by GA_based compromise programming. Environment International 2001, 26(7-8):523-541.
    • (2001) Environment International , vol.26 , Issue.7-8 , pp. 523-541
    • Tseng, C.C.1    Chang, N.B.2
  • 43
    • 0036468601 scopus 로고    scopus 로고
    • Atmospheric urban pollution: applications of an artificial neural network (ANN) to the city of Perugia
    • Viotti P., Liuti G., Genova P.D. Atmospheric urban pollution: applications of an artificial neural network (ANN) to the city of Perugia. Ecological Modelling 2002, 48(1):27-46.
    • (2002) Ecological Modelling , vol.48 , Issue.1 , pp. 27-46
    • Viotti, P.1    Liuti, G.2    Genova, P.D.3
  • 44
    • 0038201778 scopus 로고    scopus 로고
    • Prediction of maximum daily ozone level using combined neural network and statistical characteristics
    • Wang W., Lu W., Wang X., Leung A.Y.T. Prediction of maximum daily ozone level using combined neural network and statistical characteristics. Environment International 2003, 29(5):555-562.
    • (2003) Environment International , vol.29 , Issue.5 , pp. 555-562
    • Wang, W.1    Lu, W.2    Wang, X.3    Leung, A.Y.T.4
  • 45
    • 9944241272 scopus 로고    scopus 로고
    • Statistical and computational intelligence techniques for inferential model development: a comparative evaluation and a novel proposition for fusion
    • Warne K., Prasad G., Rezvani S., Maguire L. Statistical and computational intelligence techniques for inferential model development: a comparative evaluation and a novel proposition for fusion. Engineering Applications of Artificial Intelligence 2004, 17(8):871-885.
    • (2004) Engineering Applications of Artificial Intelligence , vol.17 , Issue.8 , pp. 871-885
    • Warne, K.1    Prasad, G.2    Rezvani, S.3    Maguire, L.4
  • 46
    • 40749121317 scopus 로고    scopus 로고
    • Nonlinear time series analysis of ground -level ozone dynamics in Southern Taiwan
    • Weng Y.C., Chang N.B., Lee T.Y. Nonlinear time series analysis of ground -level ozone dynamics in Southern Taiwan. Journal of Environmental Management 2008, 87(3):405-414.
    • (2008) Journal of Environmental Management , vol.87 , Issue.3 , pp. 405-414
    • Weng, Y.C.1    Chang, N.B.2    Lee, T.Y.3
  • 48
    • 0019707668 scopus 로고
    • On the validation of models
    • Willmott C.J. On the validation of models. Physical Geography 1981, 2:184-194.
    • (1981) Physical Geography , vol.2 , pp. 184-194
    • Willmott, C.J.1
  • 49
    • 0030910140 scopus 로고    scopus 로고
    • A simple model for the probability density functions of concentration fluctuations in atmospheric plumes
    • Yee E., Chen R. A simple model for the probability density functions of concentration fluctuations in atmospheric plumes. Atmospheric Environment 1997, 31(7):991-1002.
    • (1997) Atmospheric Environment , vol.31 , Issue.7 , pp. 991-1002
    • Yee, E.1    Chen, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.