-
6
-
-
84972547716
-
Integrodifferential equation which interpolates the heat equation and the wave equation
-
Y. Fujita, Integrodifferential equation which interpolates the heat equation and the wave equation. Osaka J. Math. 27, No 2 (1990), 309-321.
-
(1990)
Osaka J. Math.
, vol.27
, Issue.2
, pp. 309-321
-
-
Fujita, Y.1
-
8
-
-
2942584456
-
Computation of the mittag-leffler function and its derivatives
-
R. Gorenflo, J. Loutchko, Yu. Luchko, Computation of the Mittag-Leffler function and its derivatives. Fract. Calc. Appl. Anal. 5, No 4 (2002), 491-518; http://www.math.bas.bg/fcaa.
-
(2002)
Fract. Calc. Appl. Anal.
, vol.5
, Issue.4
, pp. 491-518
-
-
Gorenflo, R.1
Loutchko, J.2
Yu. Luchko3
-
9
-
-
0002847893
-
Fractional calculus: Integral and differential equations of fractional order
-
In: A. Carpinteri and F. Mainardi (Eds.): Springer, Wien
-
R. Gorenflo, F. Mainardi, Fractional calculus: Integral and differential equations of fractional order. In: A. Carpinteri and F. Mainardi (Eds.): Fractals and Fractional Calculus in Continuum Mechanics. Springer, Wien (1997), 223-276.
-
(1997)
Fractals and Fractional Calculus in Continuum Mechanics.
, pp. 223-276
-
-
Gorenflo, R.1
Mainardi, F.2
-
12
-
-
58149326720
-
Some results for a fractional diffusion equation with radial symmetry in a confined region
-
E.K. Lenzi, L.R. da Silva, A.T. Silva, L.R. Evangelista, M.K. Lenzi, Some results for a fractional diffusion equation with radial symmetry in a confined region. Physica A 388, No 6 (2009), 806-810.
-
(2009)
Physica A
, vol.388
, Issue.6
, pp. 806-810
-
-
Lenzi, E.K.1
Da Silva, L.R.2
Silva, A.T.3
Evangelista, L.R.4
Lenzi, M.K.5
-
13
-
-
84860390520
-
Non-markovian diffusion equation and diffusion in a porous catalyst
-
E.K. Lenzi, H.V. Ribeiro, J. Martins, M.K. Lenzi, G.G. Lenzi, S. Specchia, Non-Markovian diffusion equation and diffusion in a porous catalyst. Chem. Eng. J. 172, No 2-3 (2011) 1083-1087.
-
(2011)
Chem. Eng. J.
, vol.172
, Issue.2-3
, pp. 1083-1087
-
-
Lenzi, E.K.1
Ribeiro, H.V.2
Martins, J.3
Lenzi, M.K.4
Lenzi, G.G.5
Specchia, S.6
-
14
-
-
77955972195
-
Fractional diffusion equation and external forces: Solutions in a confined region
-
E.K. Lenzi, R. Rossato, M.K. Lenzi, L.R. da Silva, G. Goņcalves, Fractional diffusion equation and external forces: solutions in a confined region. Z. Naturforsch. A 65, No 5 (2010), 423-430.
-
(2010)
Z. Naturforsch.
, vol.A 65
, Issue.5
, pp. 423-430
-
-
Lenzi, E.K.1
Rossato, R.2
Lenzi, M.K.3
Da Silva, L.R.4
Goņcalves, G.5
-
16
-
-
30244460855
-
The fundamental solutions for the fractional diffusionwave equation
-
F. Mainardi, The fundamental solutions for the fractional diffusionwave equation. Appl. Math. Lett. 9, No 6 (1996), 23-28.
-
(1996)
Appl. Math. Lett.
, vol.9
, Issue.6
, pp. 23-28
-
-
Mainardi, F.1
-
17
-
-
0030464353
-
Fractional relaxation-oscillation and fractional diffusionwave phenomena
-
F. Mainardi, Fractional relaxation-oscillation and fractional diffusionwave phenomena. Chaos, Solitons & Fractals 7, No 9 (1996), 1461-1477.
-
(1996)
Chaos, Solitons & Fractals
, vol.7
, Issue.9
, pp. 1461-1477
-
-
Mainardi, F.1
-
19
-
-
0002641421
-
The random walk's guide to anomalous diffusion: A fractional dynamics approach
-
R. Metzler, J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339, No 1 (2000), 1-77.
-
(2000)
Phys. Rep.
, vol.339
, Issue.1
, pp. 1-77
-
-
Metzler, R.1
Klafter, J.2
-
20
-
-
4043151477
-
The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics
-
R. Metzler, J. Klafter, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen. 37, No 31 (2004), R161-R208.
-
(2004)
J. Phys. A: Math. Gen.
, vol.37
, Issue.31
-
-
Metzler, R.1
Klafter, J.2
-
21
-
-
0003973615
-
-
John Wiley and Sons, New York
-
M.N. Ozi̧sik, Heat Conduction. John Wiley and Sons, New York (1980).
-
(1980)
Heat Conduction
-
-
Ozi̧sik, M.N.1
-
23
-
-
13844253772
-
Fractional heat conduction equation and associated thermal stress
-
Y.Z. Povstenko, Fractional heat conduction equation and associated thermal stress. J. Thermal Stresses 28, No 1 (2005), 83-102.
-
(2005)
J. Thermal Stresses
, vol.28
, Issue.1
, pp. 83-102
-
-
Povstenko, Y.Z.1
-
24
-
-
54949108246
-
Fractional heat conduction equation and associated thermal stresses in an infinite solid with spherical cavity
-
Y.Z. Povstenko, Fractional heat conduction equation and associated thermal stresses in an infinite solid with spherical cavity. Quart. J. Mech. Appl. Math. 61, No 4 (2008), 523-547.
-
(2008)
Quart. J. Mech. Appl. Math.
, vol.61
, Issue.4
, pp. 523-547
-
-
Povstenko, Y.Z.1
-
25
-
-
44649184581
-
Time-fractional radial diffusion in a sphere
-
Y. Povstenko, Time-fractional radial diffusion in a sphere. Nonlinear Dyn. 53, No 1-2 (2008), 55-65.
-
(2008)
Nonlinear Dyn.
, vol.53
, Issue.1-2
, pp. 55-65
-
-
Povstenko, Y.1
-
26
-
-
38349128567
-
Fundamental solutions to three-dimensional diffusionwave equation and associated diffusive stresses
-
Y.Z. Povstenko, Fundamental solutions to three-dimensional diffusionwave equation and associated diffusive stresses. Chaos Solitons Fractals 36, No 4 (2008), 961-972.
-
(2008)
Chaos Solitons Fractals
, vol.36
, Issue.4
, pp. 961-972
-
-
Povstenko, Y.Z.1
-
27
-
-
39749158459
-
Fundamental solutions to central symmetric problems for fractional heat conduction equation and associated thermal stresses
-
Y.Z. Povstenko, Fundamental solutions to central symmetric problems for fractional heat conduction equation and associated thermal stresses. J. Thermal Stresses 31, No 2 (2008), 127-148.
-
(2008)
J. Thermal Stresses
, vol.31
, Issue.2
, pp. 127-148
-
-
Povstenko, Y.Z.1
-
28
-
-
77956170998
-
Evolution of the initial box-signal for time-fractional diffusion-wave equation in a case of different spatial dimensions
-
Y. Povstenko, Evolution of the initial box-signal for time-fractional diffusion-wave equation in a case of different spatial dimensions. Physica A 389, No 21 (2010), 4696-4707.
-
(2010)
Physica A
, vol.389
, Issue.21
, pp. 4696-4707
-
-
Povstenko, Y.1
-
29
-
-
84869185270
-
Solutions to diffusion-wave equation in a body with a spherical cavity under dirichlet boundary condition
-
Y. Povstenko, Solutions to diffusion-wave equation in a body with a spherical cavity under Dirichlet boundary condition. Int. J. Optim. Control: Theor. Appl. 1, No 1 (2011), 3-15.
-
(2011)
Int. J. Optim. Control: Theor. Appl.
, vol.1
, Issue.1
, pp. 3-15
-
-
Povstenko, Y.1
-
30
-
-
85014620056
-
Solutions to time-fractional diffusion-wave equation in spherical coordinates
-
Y.Z. Povstenko, Solutions to time-fractional diffusion-wave equation in spherical coordinates. Acta Mech. Automat. 5, No 2 (2011), 108-111.
-
(2011)
Acta Mech. Automat.
, vol.5
, Issue.2
, pp. 108-111
-
-
Povstenko, Y.Z.1
-
31
-
-
78651277152
-
Dirichlet problem for time-fractional radial heat conduction in a sphere and associated thermal stresses
-
Y. Povstenko, Dirichlet problem for time-fractional radial heat conduction in a sphere and associated thermal stresses. J. Thermal Stresses 34, No 1 (2011), 51-67.
-
(2011)
J. Thermal Stresses
, vol.34
, Issue.1
, pp. 51-67
-
-
Povstenko, Y.1
-
32
-
-
80051706179
-
Non-axisymmetric solutions to time-fractional diffusionwave equation in an infinite cylinder
-
DOI:102478/s13540-418-435 DOI:102478/s13011
-
Y. Povstenko, Non-axisymmetric solutions to time-fractional diffusionwave equation in an infinite cylinder. Fract. Calc. Appl. Anal. 14, No 3 (2011), 418-435, DOI:10.2478/s13540-011-0026-4; at http://www.springerlink.com/content/ 1311-0454/14/3/.
-
(2011)
Fract. Calc. Appl. Anal.
, vol.14
, Issue.3
, pp. 418-435
-
-
Povstenko, Y.1
-
33
-
-
77955658476
-
Time-fractional radial diffusion in hollow geometries
-
H. Qi, J. Liu, Time-fractional radial diffusion in hollow geometries. Meccanica 45, No 4 (2010), 577-583.
-
(2010)
Meccanica
, vol.45
, Issue.4
, pp. 577-583
-
-
Qi, H.1
Liu, J.2
-
34
-
-
0001553919
-
Fractional diffusion and wave equations
-
W.R. Schneider, W. Wyss, Fractional diffusion and wave equations. J. Math. Phys. 30, No 1 (1989), 134-144.
-
(1989)
J. Math. Phys.
, vol.30
, Issue.1
, pp. 134-144
-
-
Schneider, W.R.1
Wyss, W.2
-
36
-
-
84856321078
-
Machado and i say to myself: What a fractional world
-
DOI:102478/s13540-635-654 DOI:102478/s13011
-
J.A. Tenreiro Machado, And I say to myself: "What a fractional world!" Frac. Calc. Appl. Anal. 14, No 4 (2011), 635-654, DOI:10.2478/s13540-011-0037-1; at http://www.springerlink.com/content/1311-0454/ 14/4/.
-
(2011)
Frac. Calc. Appl. Anal.
, vol.14
, Issue.4
, pp. 635-654
-
-
Tenreiro, J.A.1
-
39
-
-
0009481303
-
The fractional diffusion equation
-
W. Wyss, The fractional diffusion equation. J. Math. Phys. 27, No 11 (1986), 2782-2785.
-
(1986)
J. Math. Phys.
, vol.27
, Issue.11
, pp. 2782-2785
-
-
Wyss, W.1
-
40
-
-
0036887936
-
Chaos, fractional kinetics, and anomalous transport
-
G.M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, No 6 (2002), 461-580.
-
(2002)
Phys. Rep.
, vol.371
, Issue.6
, pp. 461-580
-
-
Zaslavsky, G.M.1
|