메뉴 건너뛰기




Volumn 40, Issue 4, 1998, Pages 273-282

Prediction intervals for neural networks via nonlinear regression

Author keywords

Backpropagation; High dimensional data; Nonparametric regression; Smoothing

Indexed keywords

ALGORITHMS; BACKPROPAGATION; COMPUTATIONAL METHODS; COMPUTER SIMULATION; CONVERGENCE OF NUMERICAL METHODS; REGRESSION ANALYSIS;

EID: 0032202770     PISSN: 00401706     EISSN: 15372723     Source Type: Journal    
DOI: 10.1080/00401706.1998.10485556     Document Type: Article
Times cited : (151)

References (14)
  • 1
    • 0029295229 scopus 로고
    • Bootstrapping Confidence Intervals for Clinical Input Variable Effects in a Network Trained to Identify the Presence of Acute Myocardial Infarction
    • Baxt, W. G., and White, H. (1995), “Bootstrapping Confidence Intervals for Clinical Input Variable Effects in a Network Trained to Identify the Presence of Acute Myocardial Infarction,” Neural Computation, 7, 624-638.
    • (1995) Neural Computation , vol.7 , pp. 624-638
    • Baxt, W.G.1    White, H.2
  • 4
    • 0027642557 scopus 로고
    • A Comparison of Two Nonparametric Estimation Schemes: MARS and Neural Networks
    • De Veaux, R. D., Psichogios, D. C., and Ungar, L. H. (1993), “A Comparison of Two Nonparametric Estimation Schemes: MARS and Neural Networks,” Computers in Chemical Engineering, 17, 819-837.
    • (1993) Computers in Chemical Engineering , vol.17 , pp. 819-837
    • De Veaux, R.D.1    Psichogios, D.C.2    Ungar, L.H.3
  • 5
    • 0023288435 scopus 로고
    • Computation Experience With Confidence Regions and Confidence Intervals for Nonlinear Least Squares
    • Donaldson, J. R., and Schnabel, R. B. (1987), “Computation Experience With Confidence Regions and Confidence Intervals for Nonlinear Least Squares,” Technometrics, 29, 67-82.
    • (1987) Technometrics , vol.29 , pp. 67-82
    • Donaldson, J.R.1    Schnabel, R.B.2
  • 7
    • 0024880831 scopus 로고
    • Multilayer Feedforward Networks Are Universal Approximators
    • Hornik, K., Stinchcombe, M., and White, H. (1989), “Multilayer Feedforward Networks Are Universal Approximators,” Neural Networks, 2, 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 9
    • 0000902690 scopus 로고
    • The Effective Number of Parameters: An Analysis of Generalization and Regularization in Nonlinear Learning Systems
    • San Mateo, CA: Morgan Kaufmann
    • Moody, J. (1992), “The Effective Number of Parameters: An Analysis of Generalization and Regularization in Nonlinear Learning Systems,” in Advances in Neural Information Processing Systems 4, San Mateo, CA: Morgan Kaufmann, pp. 847-854.
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 847-854
    • Moody, J.1
  • 10
    • 21844489855 scopus 로고
    • Controlling Correlations in Latin Hypercube Samples
    • Owen, A. B. (1994), “Controlling Correlations in Latin Hypercube Samples,” Journal of the American Statistical Association, 89, 1517-1522.
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 1517-1522
    • Owen, A.B.1
  • 11
    • 0002319419 scopus 로고
    • Statistical Ideas for Selecting Network Architectures
    • B. Kappen and S. Gielen, New York: Springer-Verlag
    • Ripley, B. D. (1994), “Statistical Ideas for Selecting Network Architectures,” in Neural Networks: Artificial Intelligence and Industrial Applications, eds. B. Kappen and S. Gielen, New York: Springer-Verlag, pp. 183-190.
    • (1994) Neural Networks: Artificial Intelligence and Industrial Applications , pp. 183-190
    • Ripley, B.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.