메뉴 건너뛰기




Volumn 19, Issue 5, 2011, Pages 983-988

Prediction interval construction and optimization for adaptive neurofuzzy inference systems

Author keywords

Adaptive neurofuzzy inference system (ANFIS); prediction interval (PI); uncertainty

Indexed keywords

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM; ANFIS MODEL; NONLINEAR COST FUNCTIONS; OPTIMIZATION ALGORITHMS; PREDICTION INTERVAL; SYSTEM OPERATION; UNCERTAINTY;

EID: 80053644209     PISSN: 10636706     EISSN: None     Source Type: Journal    
DOI: 10.1109/TFUZZ.2011.2130529     Document Type: Article
Times cited : (106)

References (20)
  • 1
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • May/Jun.
    • J.-S. Jang, "ANFIS: Adaptive-network-based fuzzy inference system," IEEE Trans. Syst., Man, Cybern., vol. 23, no. 3, pp. 665-685, May/Jun. 1993.
    • (1993) IEEE Trans. Syst., Man, Cybern. , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.-S.1
  • 3
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • DOI 10.1016/0893-6080(89)90020-8
    • K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Netw., vol. 2, no. 5, pp. 359- 366, 1989. (Pubitemid 20609008)
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik Kurt1    Stinchcombe Maxwell2    White Halbert3
  • 5
    • 0040428297 scopus 로고    scopus 로고
    • Prediction intervals for artificial neural networks
    • J. T. G. Hwang and A. A. Ding, "Prediction intervals for artificial neural networks," J. Amer. Stat. Assoc., vol. 92, no. 438, pp. 748-757, 1997.
    • (1997) J. Amer. Stat. Assoc. , vol.92 , Issue.438 , pp. 748-757
    • Hwang, J.T.G.1    Ding, A.A.2
  • 6
    • 79952186591 scopus 로고    scopus 로고
    • Lower upper bound estimationmethod for construction of neural network-based prediction intervals
    • Mar.
    • A. Khosravi, S. Nahavandi, D. Creighton, and A. F. Atiya, "Lower upper bound estimationmethod for construction of neural network-based prediction intervals," IEEE Trans. Neural Networks, vol. 22, no. 3, pp. 337-346, Mar. 2011.
    • (2011) IEEE Trans. Neural Networks , vol.22 , Issue.3 , pp. 337-346
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3    Atiya, A.F.4
  • 7
    • 0032202770 scopus 로고    scopus 로고
    • Prediction intervals for neural networks via nonlinear regression
    • R. D. de Veaux, J. Schumi, J. Schweinsberg, and L. H. Ungar, "Prediction intervals for neural networks via nonlinear regression," Technometr., vol. 40, no. 4, pp. 273-282, 1998. (Pubitemid 128631254)
    • (1998) Technometrics , vol.40 , Issue.4 , pp. 273-282
    • De Veaux, R.D.1    Schweinsberg, J.2    Schumi, J.3    Ungar, L.H.4
  • 8
    • 0000234257 scopus 로고
    • The evidence framework applied to classification networks
    • D. J. C. MacKay, "The evidence framework applied to classification networks," Neural Comput., vol. 4, no. 5, pp. 720-736, 1992.
    • (1992) Neural Comput. , vol.4 , Issue.5 , pp. 720-736
    • MacKay, D.J.C.1
  • 9
    • 0002344794 scopus 로고
    • Bootstrap methods: Another look at the jackknife
    • B. Efron, "Bootstrap methods: Another look at the jackknife," Annal. Stat., vol. 7, no. 1, pp. 1-26, 1979.
    • (1979) Annal. Stat. , vol.7 , Issue.1 , pp. 1-26
    • Efron, B.1
  • 10
    • 84898947879 scopus 로고    scopus 로고
    • Practical confidence and prediction intervals
    • T. P. M. Mozer and M. Jordan, Eds., Cambridge, MA: MIT Press
    • T. Heskes, "Practical confidence and prediction intervals," in Advances is Neural Information Processing System, T. P. M. Mozer and M. Jordan, Eds. vol. 9, Cambridge, MA: MIT Press, 1997, pp. 176-182.
    • (1997) Advances Is Neural Information Processing System , vol.9 , pp. 176-182
    • Heskes, T.1
  • 11
    • 0028739205 scopus 로고
    • Estimating the mean and variance of the target probability distribution
    • D. Nix and A. Weigend, "Estimating the mean and variance of the target probability distribution," in Proc. IEEE Int. Conf. Neural Netw., 1994, vol. 1, pp. 55-60.
    • (1994) Proc. IEEE Int. Conf. Neural Netw. , vol.1 , pp. 55-60
    • Nix, D.1    Weigend, A.2
  • 12
    • 77954834717 scopus 로고    scopus 로고
    • Construction of optimal prediction intervals for load forecasting problem
    • Aug.
    • A. Khosravi, S. Nahavandi, and D. Creighton, "Construction of optimal prediction intervals for load forecasting problem," IEEE Trans. Power Syst., vol. 25, no. 3, pp. 1496-1503, Aug. 2010.
    • (2010) IEEE Trans. Power Syst. , vol.25 , Issue.3 , pp. 1496-1503
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3
  • 13
    • 70449526290 scopus 로고    scopus 로고
    • A prediction interval-based approach to determine optimal structures of neural network metamodels
    • A. Khosravi, S.Nahavandi, and D. Creighton, "A prediction interval-based approach to determine optimal structures of neural network metamodels," Expert Syst. Appl., vol. 37, pp. 2377-2387, 2010.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 2377-2387
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3
  • 14
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, "Optimization by simulated annealing," Science, vol. 220, pp. 671-680, 1983.
    • (1983) Science , vol.220 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt Jr., C.D.2    Vecchi, M.P.3
  • 15
    • 34047179107 scopus 로고    scopus 로고
    • Self-organizing and self-evolving neurons: A new neural network for optimization
    • DOI 10.1109/TNN.2006.887556
    • S. Wu and T. Chow, "Self-organizing and self-evolving neurons: A new neural network for optimization," IEEE Trans. Neural Netw., vol. 18, no. 2, pp. 385-396, Mar. 2007. (Pubitemid 46522564)
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.2 , pp. 385-396
    • Wu, S.1    Chow, T.W.S.2
  • 16
    • 33745147536 scopus 로고    scopus 로고
    • Optimizing fuzzy neural networks for tuning PID controllers using an orthogonal simulated annealing algorithm OSA
    • DOI 10.1109/TFUZZ.2006.876985
    • S.-J. Ho, L.-S. Shu, and S.-Y. Ho, "Optimizing fuzzy neural networks for tuning PID controllers using an orthogonal simulated annealing algorithm OSA," IEEE Trans. Fuzzy Syst., vol. 14, no. 3, pp. 421-434, Jun. 2006. (Pubitemid 43898884)
    • (2006) IEEE Transactions on Fuzzy Systems , vol.14 , Issue.3 , pp. 421-434
    • Ho, S.-J.1    Shu, L.-S.2    Ho, S.-Y.3
  • 17
    • 58149235117 scopus 로고    scopus 로고
    • On the identifiability of TSK additive fuzzy rule-based models
    • J. A. M. and J. Benítez, "On the identifiability of TSK additive fuzzy rule-based models," Adv. Soft Comput., vol. 6, pp. 79-86, 2006.
    • (2006) Adv. Soft Comput. , vol.6 , pp. 79-86
    • A, M.J.1    Benítez, J.2
  • 18
    • 70449440498 scopus 로고    scopus 로고
    • Constructing prediction intervals for neural network metamodels of complex systems
    • A. Khosravi, S. Nahavandi, and D. Creighton, "Constructing prediction intervals for neural network metamodels of complex systems," in Proc. Int. Joint Conf. Neural Networks, 2009, pp. 1576-1582.
    • (2009) Proc. Int. Joint Conf. Neural Networks , pp. 1576-1582
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3
  • 19
    • 0024479052 scopus 로고
    • Onand off-line identification of linear state-space models
    • M. Moonen, B. De Moor, L. Vandenberghe, and J. Vandewalle, "Onand off-line identification of linear state-space models," Int. J. Control, vol. 49, no. 1, pp. 219-232, 1989.
    • (1989) Int. J. Control , vol.49 , Issue.1 , pp. 219-232
    • Moonen, M.1    De Moor, B.2    Vandenberghe, L.3    Vandewalle, J.4
  • 20
    • 0031190319 scopus 로고    scopus 로고
    • System identification using balanced parameterizations
    • PII S0018928697050642
    • C. T. Chou and J. Maciejowski, "System identification using balanced parametrizations," IEEE Trans. Autom. Control, vol. 42, no. 7, pp. 956- 974, Jul. 1997. (Pubitemid 127826253)
    • (1997) IEEE Transactions on Automatic Control , vol.42 , Issue.7 , pp. 956-974
    • Chou, C.T.1    Maciejowski, J.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.