메뉴 건너뛰기




Volumn 16, Issue 1, 2013, Pages 51-63

Solvability for a couple system of nonlinear fractional differential equations in a Banach space

Author keywords

Caputo fractional derivative; measures of noncompactness; nonlinear fractional differential equations

Indexed keywords


EID: 84871761124     PISSN: 13110454     EISSN: 13142444     Source Type: Journal    
DOI: 10.2478/s13540-013-0004-0     Document Type: Article
Times cited : (27)

References (31)
  • 2
    • 0003797958 scopus 로고    scopus 로고
    • Academic Press New York-London-Toronto 0924.34008
    • I. Podlubny, Fractional Differential equations, Mathematics in Science and Engineering. Academic Press, New York-London-Toronto (1999).
    • (1999) Fractional Differential Equations
    • Podlubny, I.1
  • 4
    • 25144460994 scopus 로고    scopus 로고
    • Positive solutions for boundary value problem of nonlinear fractional differential equation
    • 2168413 1079.34048 10.1016/j.jmaa.2005.02.052
    • Z. Bai, H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311 (2005), 495-505.
    • (2005) J. Math. Anal. Appl. , vol.311 , pp. 495-505
    • Bai, Z.1    Lü, H.2
  • 5
    • 84869152261 scopus 로고    scopus 로고
    • A note on the existence of solution for some boundary value problem of fractional differential inclutions
    • 2897772
    • A. Cernea, A note on the existence of solution for some boundary value problem of fractional differential inclutions. Fract. Calc. Appl. Anal. 15, No 2 (2012), 183-194; DOI:10.2478/s13540-012-0013-4; at http://link.springer.com/ article/10.2478/s13540-012-0013-4
    • (2012) Fract. Calc. Appl. Anal. , vol.15 , Issue.2 , pp. 183-194
    • Cernea, A.1
  • 6
    • 68349091496 scopus 로고    scopus 로고
    • Positive solutions for boundary value problems of nonlinear fractional differential equation
    • 2560222 1185.26011 10.1016/j.na.2009.04.045
    • S. Liang, J. Zhang, Positive solutions for boundary value problems of nonlinear fractional differential equation. Nonlinear Anal. 71 (2009), 5545-5550.
    • (2009) Nonlinear Anal. , vol.71 , pp. 5545-5550
    • Liang, S.1    Zhang, J.2
  • 7
    • 67349088414 scopus 로고    scopus 로고
    • Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives
    • 2524420 1172.26307 10.1016/j.na.2009.01.043
    • S.Q. Zhang, Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives. Nonlinear Anal. 71 (2009), 2087-2093.
    • (2009) Nonlinear Anal. , vol.71 , pp. 2087-2093
    • Zhang, S.Q.1
  • 8
    • 53949111458 scopus 로고    scopus 로고
    • Basic theory of fractional differential equations
    • 2446361 1161.34001 10.1016/j.na.2007.08.042
    • V. Lakshmikantham, A.S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal. 69 (2008), 2677-2682.
    • (2008) Nonlinear Anal. , vol.69 , pp. 2677-2682
    • Lakshmikantham, V.1    Vatsala, A.S.2
  • 9
    • 51349139941 scopus 로고    scopus 로고
    • Theory of fractional functional differential equations
    • 2450543 1162.34344 10.1016/j.na.2007.09.025
    • V. Lakshmikantham, Theory of fractional functional differential equations. Nonlinear Anal. 69 (2008), 3337-3343.
    • (2008) Nonlinear Anal. , vol.69 , pp. 3337-3343
    • Lakshmikantham, V.1
  • 10
    • 78049442199 scopus 로고    scopus 로고
    • The existence of multiple positive solutions for boundary value problems of nonlinear fractional differential equations
    • 2736074 1221.34068 10.1016/j.cnsns.2010.08.017
    • Y.G. Zhao, S.R. Sun, Z.L. Han, Q.P. Li, The existence of multiple positive solutions for boundary value problems of nonlinear fractional differential equations. Commun. Nonlinear Sci. Numer. Simulat. 16 (2011), 2086-2097.
    • (2011) Commun. Nonlinear Sci. Numer. Simulat. , vol.16 , pp. 2086-2097
    • Zhao, Y.G.1    Sun, S.R.2    Han, Z.L.3    Li, Q.P.4
  • 11
    • 69549108574 scopus 로고    scopus 로고
    • Theory of fractional differential equations with three-piont boundary condtion
    • B. Ahmad, S. Sivasundaram, Theory of fractional differential equations with three-piont boundary condtion. Commun. in Appl. Analysis 12 (2008), 479-484.
    • (2008) Commun. in Appl. Analysis , vol.12 , pp. 479-484
    • Ahmad, B.1    Sivasundaram, S.2
  • 13
    • 1242321329 scopus 로고    scopus 로고
    • The existence of a positive solution for a singular coupled system of nonlinear fractional differential equations
    • 2039662 1061.34001 10.1016/S0096-3003(03)00294-7
    • C. Bai, J. Fang, The existence of a positive solution for a singular coupled system of nonlinear fractional differential equations. Appl. Math. Comput. 150 (2004), 611-621.
    • (2004) Appl. Math. Comput. , vol.150 , pp. 611-621
    • Bai, C.1    Fang, J.2
  • 14
    • 43049157795 scopus 로고    scopus 로고
    • Numerical solutions of coupled Burgers equations with time and space fractional derivatives
    • 2421626 1143.65102 10.1016/j.amc.2007.10.050
    • Y. Chen, H. An, Numerical solutions of coupled Burgers equations with time and space fractional derivatives. Appl. Math. Comput. 200 (2008), 87-95.
    • (2008) Appl. Math. Comput. , vol.200 , pp. 87-95
    • Chen, Y.1    An, H.2
  • 15
    • 47849129193 scopus 로고    scopus 로고
    • Mathematical modeling of time fractional reaction-diffusion systems
    • 2444166 1152.45008 10.1016/j.cam.2007.08.011
    • V. Gafiychuk, B. Datsko, V. Meleshko, Mathematical modeling of time fractional reaction-diffusion systems. J. Comput. Appl. Math. 220 (2008), 215-225.
    • (2008) J. Comput. Appl. Math. , vol.220 , pp. 215-225
    • Gafiychuk, V.1    Datsko, B.2    Meleshko, V.3
  • 16
    • 10844262723 scopus 로고    scopus 로고
    • Positive solutions of a system of non-autonomous fractional differential equations
    • 2106546 1064.34004 10.1016/j.jmaa.2004.08.007
    • V.D. Gejji, Positive solutions of a system of non-autonomous fractional differential equations. J. Math. Anal. Appl. 302 (2005), 56-64.
    • (2005) J. Math. Anal. Appl. , vol.302 , pp. 56-64
    • Gejji, V.D.1
  • 17
    • 27744589296 scopus 로고    scopus 로고
    • Finite time stability analysis of PDα fractional control of robotic time-delay systems
    • 2183571 10.1016/j.mechrescom.2005.08.010
    • M.P. Lazarevi, Finite time stability analysis of PDα fractional control of robotic time-delay systems. Mech. Res. Comm. 33 (2006), 269-279.
    • (2006) Mech. Res. Comm. , vol.33 , pp. 269-279
    • Lazarevi, M.P.1
  • 18
    • 67249147016 scopus 로고    scopus 로고
    • Analysis of the solutions of coupled nonlinear fractional reaction-diffusion equations
    • 2537626 1198.35123 10.1016/j.chaos.2008.04.039
    • V. Gafiychuk, B. Datsko, V. Meleshko, D. Blackmore, Analysis of the solutions of coupled nonlinear fractional reaction-diffusion equations, Chaos Solitons Fractals 41 (2009), 1095-1104.
    • (2009) Chaos Solitons Fractals , vol.41 , pp. 1095-1104
    • Gafiychuk, V.1    Datsko, B.2    Meleshko, V.3    Blackmore, D.4
  • 19
    • 55649098198 scopus 로고    scopus 로고
    • Boundary value problem for a coupled system of nonlinear fractional differential equations
    • 2483163 1163.34321 10.1016/j.aml.2008.03.001
    • X. Su, Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett. 22 (2009), 64-69.
    • (2009) Appl. Math. Lett. , vol.22 , pp. 64-69
    • Su, X.1
  • 20
    • 70349131961 scopus 로고    scopus 로고
    • Existence results for a coupled systemof nonlinear fractional differential equationswith three-point boundary conditions
    • 2557562 1205.34003 10.1016/j.camwa.2009.07.091
    • B. Ahmad, J.J. Nieto, Existence results for a coupled systemof nonlinear fractional differential equationswith three-point boundary conditions. Comput. Math. Appl. 58 (2009), 1838-1843.
    • (2009) Comput. Math. Appl. , vol.58 , pp. 1838-1843
    • Ahmad, B.1    Nieto, J.J.2
  • 21
    • 0001805106 scopus 로고    scopus 로고
    • Discrete-time fractional-order controllers
    • 1815334 1111.93307
    • J.A. Tenreiro-Machado, Discrete-time fractional-order controllers. Fract. Calc. Appl. Anal. 4, No 1 (2001), 47-68; http://www.math.bas.bg/~fcaa
    • (2001) Fract. Calc. Appl. Anal. , vol.4 , Issue.1 , pp. 47-68
    • Tenreiro-Machado, J.A.1
  • 22
    • 71149084117 scopus 로고    scopus 로고
    • On the application of measure of noncompactness to the existence of solutions for fractional differential equations
    • 2571191 1196.26009 10.1007/s00025-009-0434-5
    • R.P. Agarwal, M. Benchohra, D. Seba, On the application of measure of noncompactness to the existence of solutions for fractional differential equations. Result. Math. 55 (2009), 221-230.
    • (2009) Result. Math. , vol.55 , pp. 221-230
    • Agarwal, R.P.1    Benchohra, M.2    Seba, D.3
  • 23
    • 70249094750 scopus 로고    scopus 로고
    • An existence result for nonlinear fractional differential equations on Banach spaces
    • Article ID 628916, 11 pages; doi:10.1155/2009/62891
    • M. Benchohra, A. Cabada, D. Seba, An existence result for nonlinear fractional differential equations on Banach spaces. Boundary Value Problems 2009, Article ID 628916, 11 pages; doi:10.1155/2009/628916.
    • (2009) Boundary Value Problems
    • Benchohra, M.1    Cabada, A.2    Seba, D.3
  • 24
    • 84866126350 scopus 로고    scopus 로고
    • Anti-periodic fractional boundary value problems with nonlinear term depending on lower order derivative
    • 2944110
    • B. Ahmad, J.J. Nieto, Anti-periodic fractional boundary value problems with nonlinear term depending on lower order derivative. Fract. Calc. Appl. Anal. 15, No 3 (2012), 427-451; DOI:10.2478/s13540-012-0032-1; ttp://link.springer.com/article/10.2478/s13540-012-0032-1
    • (2012) Fract. Calc. Appl. Anal. , vol.15 , Issue.3 , pp. 427-451
    • Ahmad, B.1    Nieto, J.J.2
  • 25
    • 80051682888 scopus 로고    scopus 로고
    • Stability analysis of fractional-order systems with double noncommensurate orders for matrix case
    • 2837640
    • Z. Jiao, Y.Q. Chen, Stability analysis of fractional-order systems with double noncommensurate orders for matrix case. Fract. Calc. Appl. Anal. 14, No 3 (2011), 419-436; DOI:10.2478/s13540-011-0027-3; http://link.springer.com/ article/10.2478/s13540-011-0027-3
    • (2011) Fract. Calc. Appl. Anal. , vol.14 , Issue.3 , pp. 419-436
    • Jiao, Z.1    Chen, Y.Q.2
  • 26
    • 84862673641 scopus 로고    scopus 로고
    • Impulse response of a generalized fractional second order filter
    • 2872113
    • Z. Jiao, Y.Q. Chen, Impulse response of a generalized fractional second order filter. Fract. Calc. Appl. Anal. 15, No 1 (2012), 71-97; DOI:10.2478/s13540-012-0007-2; http://link.springer.com/article/10.2478/s13540- 012-0007-2
    • (2012) Fract. Calc. Appl. Anal. , vol.15 , Issue.1 , pp. 71-97
    • Jiao, Z.1    Chen, Y.Q.2
  • 27
    • 84866054434 scopus 로고    scopus 로고
    • Monotone iterative method for a class of nonlinear fractional differential equations
    • 2897777
    • G.T. Wang, D. Baleanu, L.H. Zhang, Monotone iterative method for a class of nonlinear fractional differential equations. Fract. Calc. Appl. Anal. 15, No 2 (2012), 244-252; DOI:10.2478/s13540-012-0018-z; http://link.springer.com/ article/10.2478/s13540-012-0018-z
    • (2012) Fract. Calc. Appl. Anal. , vol.15 , Issue.2 , pp. 244-252
    • Wang, G.T.1    Baleanu, D.2    Zhang, L.H.3
  • 28
    • 0003556538 scopus 로고
    • Ser. Lecture Notes in Pure and Applied Mathematics, Marcel Dekker New York 0441.47056
    • J. Banas, K. Goebel, Measures of Noncompactness in Banach Spaces. Ser. Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York (1980).
    • (1980) Measures of Noncompactness in Banach Spaces
    • Banas, J.1    Goebel, K.2
  • 31
    • 85025388519 scopus 로고
    • Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces
    • 586861 0462.34041 10.1016/0362-546X(80)90010-3
    • H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Anal. 4 (1980), 985-999.
    • (1980) Nonlinear Anal. , vol.4 , pp. 985-999
    • Mönch, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.