메뉴 건너뛰기




Volumn 41, Issue 3, 2009, Pages 1095-1104

Analysis of the solutions of coupled nonlinear fractional reaction-diffusion equations

Author keywords

[No Author keywords available]

Indexed keywords

BOUNDARY CONDITIONS; CONTROL NONLINEARITIES; DIFFUSION IN LIQUIDS; NONLINEAR EQUATIONS; ONE DIMENSIONAL; ORDINARY DIFFERENTIAL EQUATIONS; PARTIAL DIFFERENTIAL EQUATIONS; STOCHASTIC SYSTEMS;

EID: 67249147016     PISSN: 09600779     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.chaos.2008.04.039     Document Type: Article
Times cited : (68)

References (28)
  • 4
    • 22244457957 scopus 로고
    • The projection dynamics of highly dissipative system
    • Lubashevskii A., and Gafiychuk V.V. The projection dynamics of highly dissipative system. Phys Rev E 50 1 (1994) 171-181
    • (1994) Phys Rev E , vol.50 , Issue.1 , pp. 171-181
    • Lubashevskii, A.1    Gafiychuk, V.V.2
  • 5
    • 27244451499 scopus 로고    scopus 로고
    • Turing pattern formation in fractional activator-inhibitor systems
    • Henry B.I., Langlands T.A.M., and Wearne S.L. Turing pattern formation in fractional activator-inhibitor systems. Phys Rev E 72 (2005) 026101
    • (2005) Phys Rev E , vol.72 , pp. 026101
    • Henry, B.I.1    Langlands, T.A.M.2    Wearne, S.L.3
  • 6
    • 0343526808 scopus 로고    scopus 로고
    • Fractional reaction-diffusion
    • Henry B.I., and Wearne S.L. Fractional reaction-diffusion. Physica A 276 (2000) 448-455
    • (2000) Physica A , vol.276 , pp. 448-455
    • Henry, B.I.1    Wearne, S.L.2
  • 7
    • 0036306866 scopus 로고    scopus 로고
    • Existence of turing instabilities in a two-species fractional reaction-diffusion system
    • Henry B.I., and Wearne S.L. Existence of turing instabilities in a two-species fractional reaction-diffusion system. Siam J Appl Math 62 3 (2002) 870-887
    • (2002) Siam J Appl Math , vol.62 , Issue.3 , pp. 870-887
    • Henry, B.I.1    Wearne, S.L.2
  • 8
    • 41349112464 scopus 로고    scopus 로고
    • Systematic derivation of reaction-diffusion equations with distributed delays and relations to fractional reaction-diffusion equations and hyperbolic transport equations: application to the theory of Neolithic transition
    • Vlad M.O., and Ross J. Systematic derivation of reaction-diffusion equations with distributed delays and relations to fractional reaction-diffusion equations and hyperbolic transport equations: application to the theory of Neolithic transition. Phys Rev E 66 (2002) 061908
    • (2002) Phys Rev E , vol.66 , pp. 061908
    • Vlad, M.O.1    Ross, J.2
  • 9
    • 0042708009 scopus 로고    scopus 로고
    • Fractional reaction-diffusion equation
    • Seki K., Wojcik M., and Tachiya M. Fractional reaction-diffusion equation. J Chem Phys 119 (2003) 2165
    • (2003) J Chem Phys , vol.119 , pp. 2165
    • Seki, K.1    Wojcik, M.2    Tachiya, M.3
  • 10
    • 33646097441 scopus 로고    scopus 로고
    • Pattern formation in a fractional reaction-diffusion system
    • Gafiychuk V., and Datsko B. Pattern formation in a fractional reaction-diffusion system. Phys A Statist Mech Appl 365 (2006) 300-306
    • (2006) Phys A Statist Mech Appl , vol.365 , pp. 300-306
    • Gafiychuk, V.1    Datsko, B.2
  • 11
    • 67249164435 scopus 로고    scopus 로고
    • Saxena RK, Mathai AM, Haubold HJ. Fractional reaction-diffusion equations. arXiv:math.CA/0604473 v1 21, April 2006.
    • Saxena RK, Mathai AM, Haubold HJ. Fractional reaction-diffusion equations. arXiv:math.CA/0604473 v1 21, April 2006.
  • 12
    • 34247614459 scopus 로고    scopus 로고
    • Stability analysis and oscillatory structures in time-fractional reaction-diffusion systems
    • Gafiychuk V., and Datsko B. Stability analysis and oscillatory structures in time-fractional reaction-diffusion systems. Phys Rev E 75 (2007) 055201-1-055201-4
    • (2007) Phys Rev E , vol.75
    • Gafiychuk, V.1    Datsko, B.2
  • 14
    • 9144261821 scopus 로고    scopus 로고
    • Travelling turing patterns with anomalous diffusion
    • Varea C., and Barrio R.A. Travelling turing patterns with anomalous diffusion. J Phys Condens Matter 16 (2004) 5081-5090
    • (2004) J Phys Condens Matter , vol.16 , pp. 5081-5090
    • Varea, C.1    Barrio, R.A.2
  • 15
    • 33746269889 scopus 로고    scopus 로고
    • Nonholonomic constraints with fractional derivatives
    • Tarasov V.E., and Zaslavsky G.M. Nonholonomic constraints with fractional derivatives. J Phys A Math Gen 39 (2006) 9797-9815
    • (2006) J Phys A Math Gen , vol.39 , pp. 9797-9815
    • Tarasov, V.E.1    Zaslavsky, G.M.2
  • 18
    • 33745712077 scopus 로고    scopus 로고
    • Numerical treatment of an initial-boundary value problem for fractional partial differential equations
    • Ciesielski M., and Leszczynski J. Numerical treatment of an initial-boundary value problem for fractional partial differential equations. Signal Process 86 (2006) 2619-2631
    • (2006) Signal Process , vol.86 , pp. 2619-2631
    • Ciesielski, M.1    Leszczynski, J.2
  • 19
    • 33947277891 scopus 로고    scopus 로고
    • Generalized Taylor's formula
    • Odibat Z.M., and Shawagfeh N.T. Generalized Taylor's formula. Appl Math Comput 186 1 (2006) 286-293
    • (2006) Appl Math Comput , vol.186 , Issue.1 , pp. 286-293
    • Odibat, Z.M.1    Shawagfeh, N.T.2
  • 20
    • 33745194344 scopus 로고    scopus 로고
    • New function of Mittag-Leffler type and its application in the fractional diffusion-wave equation
    • Yu R., and Zhang H. New function of Mittag-Leffler type and its application in the fractional diffusion-wave equation. Chaos, Solitons & Fractals 30 (2006) 946-955
    • (2006) Chaos, Solitons & Fractals , vol.30 , pp. 946-955
    • Yu, R.1    Zhang, H.2
  • 22
    • 0141920794 scopus 로고    scopus 로고
    • Solution of the system of ordinary differential equations by Adomian decomposition method
    • Biazar J., Babolian E., and Islam R. Solution of the system of ordinary differential equations by Adomian decomposition method. Appl Math Comput 147 3 (2004) 713-719
    • (2004) Appl Math Comput , vol.147 , Issue.3 , pp. 713-719
    • Biazar, J.1    Babolian, E.2    Islam, R.3
  • 23
    • 33746218471 scopus 로고    scopus 로고
    • Solving a system of nonlinear fractional differential equations using Adomian decomposition
    • Jafari H., and Daftardar-Gejji V. Solving a system of nonlinear fractional differential equations using Adomian decomposition. J Comput Appl Math 196 (2006) 644-651
    • (2006) J Comput Appl Math , vol.196 , pp. 644-651
    • Jafari, H.1    Daftardar-Gejji, V.2
  • 24
    • 2442548776 scopus 로고    scopus 로고
    • Analysis of a system of fractional differential equations
    • Daftardar-Gejji V., and Babakhani A. Analysis of a system of fractional differential equations. J Math Anal Appl 293 (2004) 511-522
    • (2004) J Math Anal Appl , vol.293 , pp. 511-522
    • Daftardar-Gejji, V.1    Babakhani, A.2
  • 25
    • 67249105775 scopus 로고    scopus 로고
    • Chaotic and pseudochaotic attractors of perturbed fractional oscillator
    • arXiv:nlin.CD/0508018
    • Zaslavsky GM, Stanislavsky AA, Edelman M. Chaotic and pseudochaotic attractors of perturbed fractional oscillator. arXiv:nlin.CD/0508018.
    • Zaslavsky, G.M.1    Stanislavsky, A.A.2    Edelman, M.3
  • 26
    • 0002731965 scopus 로고    scopus 로고
    • Stability results for fractional differential equations with applications to control processing
    • Lille, France 963
    • Matignon D. Stability results for fractional differential equations with applications to control processing. Computational Eng in Sys Appl, vol. 2, Lille, France 963, 1996.
    • (1996) Computational Eng in Sys Appl , vol.2
    • Matignon, D.1
  • 27
    • 17144403633 scopus 로고
    • The fractional calculus: theory and applications of differentiation and integration to arbitrary order
    • Academic Press, New York
    • Oldham K.D., and Spanier J. The fractional calculus: theory and applications of differentiation and integration to arbitrary order. Mathematics in science and engineering vol.111 (1974), Academic Press, New York
    • (1974) Mathematics in science and engineering , vol.111
    • Oldham, K.D.1    Spanier, J.2
  • 28
    • 33748425302 scopus 로고    scopus 로고
    • Numerical comparison of methods for solving linear differential equations of fractional order
    • Momani S., and Odibat Z. Numerical comparison of methods for solving linear differential equations of fractional order. Chaos, Solitons & Fractals 31 (2007) 1248-1255
    • (2007) Chaos, Solitons & Fractals , vol.31 , pp. 1248-1255
    • Momani, S.1    Odibat, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.