메뉴 건너뛰기




Volumn 101, Issue 1, 2013, Pages 38-48

Interval-valued analysis for discriminative gene selection and tissue sample classification using microarray data

Author keywords

Classification; Gene selection; Interval valued decision table; Microarray; Rough sets

Indexed keywords

ACCURACY; ARTICLE; CLASSIFICATION; CLASSIFICATION ALGORITHM; DNA MICROARRAY; GENE EXPRESSION; GENETIC SELECTION; INTERVAL VALUED ANALYSIS; NOISE; PREDICTION; PRIORITY JOURNAL; ROUGH SET; STATISTICAL ANALYSIS; TISSUE SAMPLE CLASSIFICATION;

EID: 84871684397     PISSN: 08887543     EISSN: 10898646     Source Type: Journal    
DOI: 10.1016/j.ygeno.2012.09.004     Document Type: Article
Times cited : (11)

References (57)
  • 1
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
    • Golub T.R., et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999, 286:531-537.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1
  • 2
    • 80053533738 scopus 로고    scopus 로고
    • Microarray-based cancer prediction using single genes
    • Wang X., Simon R. Microarray-based cancer prediction using single genes. BMC Bioinformatics 2011, 12(1):391.
    • (2011) BMC Bioinformatics , vol.12 , Issue.1 , pp. 391
    • Wang, X.1    Simon, R.2
  • 3
    • 77249104476 scopus 로고    scopus 로고
    • An evolutionary approach for gene selection and classification of microarray data based on SVM error-bound theories
    • Debnath R., Kurita T. An evolutionary approach for gene selection and classification of microarray data based on SVM error-bound theories. Biosystems 2010, 100(1):39-46.
    • (2010) Biosystems , vol.100 , Issue.1 , pp. 39-46
    • Debnath, R.1    Kurita, T.2
  • 5
    • 79151480613 scopus 로고    scopus 로고
    • Regularized logistic regression without a penalty term: an application to cancer classification with microarray data
    • Bielza C., Robles V., Larrańaga P. Regularized logistic regression without a penalty term: an application to cancer classification with microarray data. Expert Syst. Appl. 2011, 38(5):5110-5118.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.5 , pp. 5110-5118
    • Bielza, C.1    Robles, V.2    Larrańaga, P.3
  • 6
    • 25444446813 scopus 로고    scopus 로고
    • Evaluation of normalization methods for cDNA microarray data by k-NN classification
    • Wu W., Xing E., Myers C., Mian I., Bissell M. Evaluation of normalization methods for cDNA microarray data by k-NN classification. BMC Bioinformatics 2005, 6(1):191.
    • (2005) BMC Bioinformatics , vol.6 , Issue.1 , pp. 191
    • Wu, W.1    Xing, E.2    Myers, C.3    Mian, I.4    Bissell, M.5
  • 8
    • 77956492136 scopus 로고    scopus 로고
    • Simple and flexible classification of gene expression microarrays via Swirls and Ripples
    • Baker S. Simple and flexible classification of gene expression microarrays via Swirls and Ripples. BMC Bioinformatics 2010, 11(1):452.
    • (2010) BMC Bioinformatics , vol.11 , Issue.1 , pp. 452
    • Baker, S.1
  • 9
    • 74049095106 scopus 로고    scopus 로고
    • Accurate molecular classification of cancer using simple rules
    • Wang X., Gotoh O. Accurate molecular classification of cancer using simple rules. BMC Med. Genomics 2009, 2(1):64.
    • (2009) BMC Med. Genomics , vol.2 , Issue.1 , pp. 64
    • Wang, X.1    Gotoh, O.2
  • 10
    • 15844413351 scopus 로고    scopus 로고
    • A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
    • Statnikov A., Aliferis C., Tsamardinos I., Hardin D., Levy S. A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics 2005, 21(5):631-643.
    • (2005) Bioinformatics , vol.21 , Issue.5 , pp. 631-643
    • Statnikov, A.1    Aliferis, C.2    Tsamardinos, I.3    Hardin, D.4    Levy, S.5
  • 12
    • 34547863496 scopus 로고    scopus 로고
    • Assessment of survival prediction models based on microarray data
    • Schumacher M., Binder H., Gerds T. Assessment of survival prediction models based on microarray data. Bioinformatics 2007, 23(14):1768-1774.
    • (2007) Bioinformatics , vol.23 , Issue.14 , pp. 1768-1774
    • Schumacher, M.1    Binder, H.2    Gerds, T.3
  • 13
    • 74049104875 scopus 로고    scopus 로고
    • A close examination of double filtering with fold change and t-test in microarray analysis
    • Zhang S., Cao J. A close examination of double filtering with fold change and t-test in microarray analysis. BMC Bioinformatics 2009, 10(1):402.
    • (2009) BMC Bioinformatics , vol.10 , Issue.1 , pp. 402
    • Zhang, S.1    Cao, J.2
  • 14
    • 84871704038 scopus 로고    scopus 로고
    • Entropy based sub-dimensional evaluation and selection method for DNA microarray data classification
    • Wang Y., Yan H. Entropy based sub-dimensional evaluation and selection method for DNA microarray data classification. Bioinformation 2008, 3(3):124.
    • (2008) Bioinformation , vol.3 , Issue.3 , pp. 124
    • Wang, Y.1    Yan, H.2
  • 16
    • 57649157675 scopus 로고    scopus 로고
    • Comparison of performance of five common classifiers represented as boundary methods: Euclidean distance to centroids, linear discriminant analysis, quadratic discriminant analysis, learning vector quantization and support vector machines, as dependent on data structure
    • Dixon S., Brereton R. Comparison of performance of five common classifiers represented as boundary methods: Euclidean distance to centroids, linear discriminant analysis, quadratic discriminant analysis, learning vector quantization and support vector machines, as dependent on data structure. Chemom. Intell. Lab. Syst. 2009, 95(1):1-17.
    • (2009) Chemom. Intell. Lab. Syst. , vol.95 , Issue.1 , pp. 1-17
    • Dixon, S.1    Brereton, R.2
  • 17
    • 33947239458 scopus 로고    scopus 로고
    • Noninferiority tests based on concordance correlation coefficient for assessment of the agreement for gene expression data from microarray experiments
    • Liao C., Lin C., Liu J. Noninferiority tests based on concordance correlation coefficient for assessment of the agreement for gene expression data from microarray experiments. J. Biopharm. Stat. 2007, 17(2):309-327.
    • (2007) J. Biopharm. Stat. , vol.17 , Issue.2 , pp. 309-327
    • Liao, C.1    Lin, C.2    Liu, J.3
  • 18
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
    • Peng H., Long F., Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27(8):1226-1238.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 19
    • 0032729435 scopus 로고    scopus 로고
    • Exploring expression data: identification and analysis of coexpressed genes
    • Laurie J., Heyer S., Shibu Y. Exploring expression data: identification and analysis of coexpressed genes. Genome Res. 2000, 10(1):1106-1115.
    • (2000) Genome Res. , vol.10 , Issue.1 , pp. 1106-1115
    • Laurie, J.1    Heyer, S.2    Shibu, Y.3
  • 20
    • 0032188308 scopus 로고    scopus 로고
    • Rough set theory and its applications to data analysis
    • Pawlak Z. Rough set theory and its applications to data analysis. Cybernet. Syst. 1998, 29:661-688.
    • (1998) Cybernet. Syst. , vol.29 , pp. 661-688
    • Pawlak, Z.1
  • 21
    • 0037252858 scopus 로고    scopus 로고
    • Rough-fuzzy mlp: modular evolution, rule generation, and evaluation
    • Pal S., Mitra S., Mitra P. Rough-fuzzy mlp: modular evolution, rule generation, and evaluation. IEEE Trans. Knowl. Data Eng. 2003, 15(1):14-25.
    • (2003) IEEE Trans. Knowl. Data Eng. , vol.15 , Issue.1 , pp. 14-25
    • Pal, S.1    Mitra, S.2    Mitra, P.3
  • 22
    • 0242289558 scopus 로고    scopus 로고
    • Knowledge acquisition in incomplete fuzzy information systems via the rough set approach
    • Wu W.Z., Zhang W.X., Li H.Z. Knowledge acquisition in incomplete fuzzy information systems via the rough set approach. Expert Syst. Appl. 2003, 20(5):280-286.
    • (2003) Expert Syst. Appl. , vol.20 , Issue.5 , pp. 280-286
    • Wu, W.Z.1    Zhang, W.X.2    Li, H.Z.3
  • 23
    • 0001905486 scopus 로고
    • Knowledge acquisition under uncertainty - a rough set approach
    • Grzymala-Busse J. Knowledge acquisition under uncertainty - a rough set approach. J. Intell. Robot. Syst. 1988, 1(1):3-16.
    • (1988) J. Intell. Robot. Syst. , vol.1 , Issue.1 , pp. 3-16
    • Grzymala-Busse, J.1
  • 24
    • 79955660643 scopus 로고    scopus 로고
    • A positive-approximation based accelerated algorithm to feature selection from incomplete decision table
    • Qian Y., Liang J., Wang F. A positive-approximation based accelerated algorithm to feature selection from incomplete decision table. Chin. J. Comput. 2011, 34(3):435-442.
    • (2011) Chin. J. Comput. , vol.34 , Issue.3 , pp. 435-442
    • Qian, Y.1    Liang, J.2    Wang, F.3
  • 25
    • 77956394680 scopus 로고    scopus 로고
    • Soft fuzzy rough sets for robust feature evaluation and selection
    • Hu Q., An S., Yu D. Soft fuzzy rough sets for robust feature evaluation and selection. Inf. Sci. 2010, 180(22):4384-4400.
    • (2010) Inf. Sci. , vol.180 , Issue.22 , pp. 4384-4400
    • Hu, Q.1    An, S.2    Yu, D.3
  • 30
    • 77958453890 scopus 로고    scopus 로고
    • Improving the performance of fuzzy rule-based classification systems with interval-valued fuzzy sets and genetic amplitude tuning
    • Sanz J., Fernández A., Bustince H., Herrera F. Improving the performance of fuzzy rule-based classification systems with interval-valued fuzzy sets and genetic amplitude tuning. Inf. Sci. 2010, 180(19):3674-3685.
    • (2010) Inf. Sci. , vol.180 , Issue.19 , pp. 3674-3685
    • Sanz, J.1    Fernández, A.2    Bustince, H.3    Herrera, F.4
  • 32
    • 0036530141 scopus 로고    scopus 로고
    • Inclusion degree: a perspective on measures for rough set data analysis
    • Xu Z.B., Liang J.Y., Dang C.Y., Chin K.S. Inclusion degree: a perspective on measures for rough set data analysis. Inf. Sci. 2002, 141(3-4):227-236.
    • (2002) Inf. Sci. , vol.141 , Issue.3-4 , pp. 227-236
    • Xu, Z.B.1    Liang, J.Y.2    Dang, C.Y.3    Chin, K.S.4
  • 33
    • 0000494080 scopus 로고    scopus 로고
    • Rough mereology: a new paradigm for approximate reasoning
    • Polkowski L., Skowron A. Rough mereology: a new paradigm for approximate reasoning. Int. J. Approx. Reason. 1996, 15(4):333-365.
    • (1996) Int. J. Approx. Reason. , vol.15 , Issue.4 , pp. 333-365
    • Polkowski, L.1    Skowron, A.2
  • 34
    • 33645993843 scopus 로고    scopus 로고
    • Knowledge reductions in information systems with fuzzy decisions
    • Zhang M., Zhang W. Knowledge reductions in information systems with fuzzy decisions. Chin. J. Eng. Math. 2003, 20:53-58.
    • (2003) Chin. J. Eng. Math. , vol.20 , pp. 53-58
    • Zhang, M.1    Zhang, W.2
  • 35
    • 27844601150 scopus 로고    scopus 로고
    • Fuzzy rough sets and multiple-premise gradual decision rules
    • Greco S., Inuiguchi M., Słowiński R. Fuzzy rough sets and multiple-premise gradual decision rules. Int. J. Approx. Reason. 2006, 41(2):179-211.
    • (2006) Int. J. Approx. Reason. , vol.41 , Issue.2 , pp. 179-211
    • Greco, S.1    Inuiguchi, M.2    Słowiński, R.3
  • 36
    • 33646194382 scopus 로고    scopus 로고
    • Relationship between similarity measure and entropy of interval valued fuzzy sets
    • Zeng W., Li H. Relationship between similarity measure and entropy of interval valued fuzzy sets. Fuzzy Set. Syst. 2006, 157(11):1477-1484.
    • (2006) Fuzzy Set. Syst. , vol.157 , Issue.11 , pp. 1477-1484
    • Zeng, W.1    Li, H.2
  • 37
    • 33646805776 scopus 로고    scopus 로고
    • Similarity measures on three kinds of fuzzy sets
    • Zhang C., Fu H. Similarity measures on three kinds of fuzzy sets. Pattern Recognit. Lett. 2006, 27(12):1307-1317.
    • (2006) Pattern Recognit. Lett. , vol.27 , Issue.12 , pp. 1307-1317
    • Zhang, C.1    Fu, H.2
  • 38
    • 36248994777 scopus 로고    scopus 로고
    • A rough set approach for the discovery of classification rules in interval-valued information systems
    • Leung Y., Fischer M.M., Wu W.Z., Mi J.S. A rough set approach for the discovery of classification rules in interval-valued information systems. Int. J. Approx. Reason. 2008, 47(2):233-246.
    • (2008) Int. J. Approx. Reason. , vol.47 , Issue.2 , pp. 233-246
    • Leung, Y.1    Fischer, M.M.2    Wu, W.Z.3    Mi, J.S.4
  • 39
    • 0035254283 scopus 로고    scopus 로고
    • Rough sets theory for multicriteria decision analysis
    • Greco S., Matarazzo B., Słowiński R. Rough sets theory for multicriteria decision analysis. Eur. J. Oper. Res. 2001, 129(1):1-47.
    • (2001) Eur. J. Oper. Res. , vol.129 , Issue.1 , pp. 1-47
    • Greco, S.1    Matarazzo, B.2    Słowiński, R.3
  • 40
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis of microarrays applied to the ionizing radiation response
    • Tusher V.G., Tibshirani R., Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. U. S. A. 2001, 98(9):5116-5121.
    • (2001) Proc. Natl. Acad. Sci. U. S. A. , vol.98 , Issue.9 , pp. 5116-5121
    • Tusher, V.G.1    Tibshirani, R.2    Chu, G.3
  • 42
    • 7244248755 scopus 로고    scopus 로고
    • A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression
    • Li T., Zhang C., Ogihara M. A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics 2004, 20(15):2429-2437.
    • (2004) Bioinformatics , vol.20 , Issue.15 , pp. 2429-2437
    • Li, T.1    Zhang, C.2    Ogihara, M.3
  • 43
    • 0027455756 scopus 로고
    • Interferon gamma inhibits apoptotic cell death in B cell chronic lymphocytic leukemia
    • Buschle M., et al. Interferon gamma inhibits apoptotic cell death in B cell chronic lymphocytic leukemia. J. Exp. Med. 1993, 177(1):213-218.
    • (1993) J. Exp. Med. , vol.177 , Issue.1 , pp. 213-218
    • Buschle, M.1
  • 44
    • 33846864687 scopus 로고    scopus 로고
    • CD33 responses are blocked by SOCS3 through accelerated proteasomal-mediated turnover
    • Orr S., et al. CD33 responses are blocked by SOCS3 through accelerated proteasomal-mediated turnover. Blood 2007, 109(3):1061-1068.
    • (2007) Blood , vol.109 , Issue.3 , pp. 1061-1068
    • Orr, S.1
  • 45
    • 42149181188 scopus 로고    scopus 로고
    • Bone marrow stromal cells and the upregulation of interleukin-8 production in human T-cell acute lymphoblastic leukemia through the CXCL12/CXCR4 axis and the NF-κb and JNK/AP-1 pathways
    • Scupoli M., et al. Bone marrow stromal cells and the upregulation of interleukin-8 production in human T-cell acute lymphoblastic leukemia through the CXCL12/CXCR4 axis and the NF-κb and JNK/AP-1 pathways. Haematologica 2008, 93(4):524-532.
    • (2008) Haematologica , vol.93 , Issue.4 , pp. 524-532
    • Scupoli, M.1
  • 46
    • 0036209626 scopus 로고    scopus 로고
    • Clinical implications of PRAME gene expression in childhood acute myeloid leukemia
    • Steinbach D., Hermann J., Viehmann S., Zintl F., Gruhn B. Clinical implications of PRAME gene expression in childhood acute myeloid leukemia. Cancer Genet. Cytogenet. 2002, 133(2):118-123.
    • (2002) Cancer Genet. Cytogenet. , vol.133 , Issue.2 , pp. 118-123
    • Steinbach, D.1    Hermann, J.2    Viehmann, S.3    Zintl, F.4    Gruhn, B.5
  • 47
    • 50949132631 scopus 로고    scopus 로고
    • Molecular profiling of LGL leukemia reveals role of sphingolipid signaling in survival of cytotoxic lymphocytes
    • Shah M., et al. Molecular profiling of LGL leukemia reveals role of sphingolipid signaling in survival of cytotoxic lymphocytes. Blood 2008, 112(3):770-781.
    • (2008) Blood , vol.112 , Issue.3 , pp. 770-781
    • Shah, M.1
  • 48
    • 4944236206 scopus 로고    scopus 로고
    • Promoter hypermethylation of cancer-related genes: a strong independent prognostic factor in acute lymphoblastic leukemia
    • Roman-Gomez J., et al. Promoter hypermethylation of cancer-related genes: a strong independent prognostic factor in acute lymphoblastic leukemia. Blood 2004, 104(8):2492-2498.
    • (2004) Blood , vol.104 , Issue.8 , pp. 2492-2498
    • Roman-Gomez, J.1
  • 49
    • 33645818761 scopus 로고    scopus 로고
    • Structured polychotomous machine diagnosis of multiple cancer types using gene expression
    • Koo J., Sohn I., Kim S., Lee J. Structured polychotomous machine diagnosis of multiple cancer types using gene expression. Bioinformatics 2006, 22(8):950-958.
    • (2006) Bioinformatics , vol.22 , Issue.8 , pp. 950-958
    • Koo, J.1    Sohn, I.2    Kim, S.3    Lee, J.4
  • 50
    • 0027973545 scopus 로고
    • Specific in vivo association between the bHLH and LIM proteins implicated in human t cell leukemia
    • Wadman I., et al. Specific in vivo association between the bHLH and LIM proteins implicated in human t cell leukemia. EMBO J. 1994, 13(20):4831-4839.
    • (1994) EMBO J. , vol.13 , Issue.20 , pp. 4831-4839
    • Wadman, I.1
  • 51
    • 0029856858 scopus 로고    scopus 로고
    • Molecular characterization of human zyxin
    • Macalma T., et al. Molecular characterization of human zyxin. J. Biol. Chem. 1996, 271(49):31470-31478.
    • (1996) J. Biol. Chem. , vol.271 , Issue.49 , pp. 31470-31478
    • Macalma, T.1
  • 52
    • 84963856757 scopus 로고    scopus 로고
    • Minimum redundancy and maximum relevance feature selection and recent advances in cancer classification
    • Peng H., Ding C. Minimum redundancy and maximum relevance feature selection and recent advances in cancer classification. Feature Selection for Data Mining 2005, 52.
    • (2005) Feature Selection for Data Mining , pp. 52
    • Peng, H.1    Ding, C.2
  • 53
    • 57749195712 scopus 로고    scopus 로고
    • RNA-seq: a revolutionary tool for transcriptomics
    • Wang Z., Gerstein M., Snyder M. RNA-seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10(1):57-63.
    • (2009) Nat. Rev. Genet. , vol.10 , Issue.1 , pp. 57-63
    • Wang, Z.1    Gerstein, M.2    Snyder, M.3
  • 54
    • 50649089207 scopus 로고    scopus 로고
    • RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays
    • Marioni J., Mason C., Mane S., Stephens M., Gilad Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 2008, 18(9):1509-1517.
    • (2008) Genome Res. , vol.18 , Issue.9 , pp. 1509-1517
    • Marioni, J.1    Mason, C.2    Mane, S.3    Stephens, M.4    Gilad, Y.5
  • 55
    • 36448981743 scopus 로고    scopus 로고
    • Moderated statistical tests for assessing differences in tag abundance
    • Robinson M., Smyth G. Moderated statistical tests for assessing differences in tag abundance. Bioinformatics 2007, 23(21):2881-2887.
    • (2007) Bioinformatics , vol.23 , Issue.21 , pp. 2881-2887
    • Robinson, M.1    Smyth, G.2
  • 56
    • 75249087100 scopus 로고    scopus 로고
    • EdgeR: a bioconductor package for differential expression analysis of digital gene expression data
    • Robinson M., McCarthy D., Smyth G. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26(1):139-140.
    • (2010) Bioinformatics , vol.26 , Issue.1 , pp. 139-140
    • Robinson, M.1    McCarthy, D.2    Smyth, G.3
  • 57
    • 77949481052 scopus 로고    scopus 로고
    • Evaluation of statistical methods for normalization and differential expression in mRNA-seq experiments
    • Bullard J., Purdom E., Hansen K., Dudoit S. Evaluation of statistical methods for normalization and differential expression in mRNA-seq experiments. BMC Bioinformatics 2010, 11(1):94.
    • (2010) BMC Bioinformatics , vol.11 , Issue.1 , pp. 94
    • Bullard, J.1    Purdom, E.2    Hansen, K.3    Dudoit, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.