메뉴 건너뛰기




Volumn 68, Issue 4, 2012, Pages 1046-1054

Model Selection for Generalized Estimating Equations Accommodating Dropout Missingness

Author keywords

Longitudinal data; Missing data; Repeated measures

Indexed keywords

BIOMETRICS;

EID: 84871667407     PISSN: 0006341X     EISSN: 15410420     Source Type: Journal    
DOI: 10.1111/j.1541-0420.2012.01758.x     Document Type: Article
Times cited : (45)

References (17)
  • 1
    • 0002881703 scopus 로고
    • A representation of the joint distribution of responses to n dichotomous items
    • In, Stanford Mathematical Studies in the Social Sciences, H. Solomon (ed.), Stanford, California: Stanford University Press.
    • Bahadur, R. R. (1961). A representation of the joint distribution of responses to n dichotomous items. In Studies in Item Analysis and Prediction, Volume VI, Stanford Mathematical Studies in the Social Sciences, H. Solomon (ed.), 158-168. Stanford, California: Stanford University Press.
    • (1961) Studies in Item Analysis and Prediction , vol.6 , pp. 158-168
    • Bahadur, R.R.1
  • 2
    • 20744449127 scopus 로고    scopus 로고
    • Variable selection for marginal longitudinal generalized linear models
    • Cantoni, E., Mills Flemming, J., and Ronchetti, E. (2005). Variable selection for marginal longitudinal generalized linear models. Biometrics 61, 507-514.
    • (2005) Biometrics , vol.61 , pp. 507-514
    • Cantoni, E.1    Mills Flemming, J.2    Ronchetti, E.3
  • 3
    • 4944239996 scopus 로고    scopus 로고
    • The estimation of prediction error: Covariance penalties and cross-validation
    • Efron, B. (2004). The estimation of prediction error: Covariance penalties and cross-validation. Journal of the American Statistical Association 99, 619-632.
    • (2004) Journal of the American Statistical Association , vol.99 , pp. 619-632
    • Efron, B.1
  • 5
    • 63149190796 scopus 로고    scopus 로고
    • Working-correlation-structure identification in generalized estimating equations
    • Hin, L.-Y. and Wang, Y.-G. (2009). Working-correlation-structure identification in generalized estimating equations. Statistics in Medicine 28, 642-658.
    • (2009) Statistics in Medicine , vol.28 , pp. 642-658
    • Hin, L.-Y.1    Wang, Y.-G.2
  • 6
    • 49549107073 scopus 로고    scopus 로고
    • Penalized estimating functions and variable selection in semiparametric regression models
    • Johnson, B., Lin, D. Y., and Zeng, D. (2008). Penalized estimating functions and variable selection in semiparametric regression models. Journal of the American Statistical Association 103, 672-680.
    • (2008) Journal of the American Statistical Association , vol.103 , pp. 672-680
    • Johnson, B.1    Lin, D.Y.2    Zeng, D.3
  • 7
    • 77649173768 scopus 로고
    • Longitudinal data analysis with generalized linear models
    • Liang, K.-Y. and Zeger, S. L. (1986). Longitudinal data analysis with generalized linear models. Biometrika 73, 13-22.
    • (1986) Biometrika , vol.73 , pp. 13-22
    • Liang, K.-Y.1    Zeger, S.L.2
  • 8
    • 84915425007 scopus 로고
    • Some comments on Cp
    • Mallows, C. L. (1973). Some comments on Cp. Technometrics 15, 661-675.
    • (1973) Technometrics , vol.15 , pp. 661-675
    • Mallows, C.L.1
  • 10
    • 0035102570 scopus 로고    scopus 로고
    • Akaike's information criterion in generalized estimating equations
    • Pan, W. (2001). Akaike's information criterion in generalized estimating equations. Biometrics 57, 120-125.
    • (2001) Biometrics , vol.57 , pp. 120-125
    • Pan, W.1
  • 11
    • 0036005421 scopus 로고    scopus 로고
    • Goodness-of-fit tests for GEE with correlated binary data
    • Pan, W. (2002). Goodness-of-fit tests for GEE with correlated binary data. Scandinavian Journal of Statistics 29, 101-110.
    • (2002) Scandinavian Journal of Statistics , vol.29 , pp. 101-110
    • Pan, W.1
  • 12
    • 0037202104 scopus 로고    scopus 로고
    • Performance of weighted estimating equations for longitudinal binary data with drop-outs missing at random
    • Preisser, J. S., Lohman, K. K., and Rathouz, P. J. (2002). Performance of weighted estimating equations for longitudinal binary data with drop-outs missing at random. Statistics in Medicine 21, 3035-3054.
    • (2002) Statistics in Medicine , vol.21 , pp. 3035-3054
    • Preisser, J.S.1    Lohman, K.K.2    Rathouz, P.J.3
  • 13
    • 84950421496 scopus 로고
    • Analysis of semiparametric regression models for repeated outcomes in the presence of missing data
    • Robins, J. M., Rotnitzky, A., and Zhao, L. P. (1995). Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association 90, 106-121.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 106-121
    • Robins, J.M.1    Rotnitzky, A.2    Zhao, L.P.3
  • 14
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin, D. B. (1976). Inference and missing data. Biometrika 63, 581-592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 15
    • 33645084238 scopus 로고    scopus 로고
    • A comparison of procedures to correct for baseline differences in the analysis of continuous longitudinal data: A case study
    • Verbeke, G., Fieuws, S., Lesaffre, E., Kato, B. S., Foreman, M. D., Broos, P. L. O., and Millisen, K. (2006). A comparison of procedures to correct for baseline differences in the analysis of continuous longitudinal data: A case study. Applied Statistics 55, 93-102.
    • (2006) Applied Statistics , vol.55 , pp. 93-102
    • Verbeke, G.1    Fieuws, S.2    Lesaffre, E.3    Kato, B.S.4    Foreman, M.D.5    Broos, P.L.O.6    Millisen, K.7
  • 16
    • 84862882955 scopus 로고    scopus 로고
    • Penalized generalized estimating equations for high-dimensional longitudinal data analysis
    • DOI: 10.1111/j.1541-0420.2011.01678.x.
    • Wang, L., Zhou, J., and Qu, A. (2011). Penalized generalized estimating equations for high-dimensional longitudinal data analysis. Biometrics 67, DOI: 10.1111/j.1541-0420.2011.01678.x.
    • (2011) Biometrics , vol.67
    • Wang, L.1    Zhou, J.2    Qu, A.3
  • 17
    • 0032351389 scopus 로고    scopus 로고
    • On measuring and correcting the effects of data mining and model selection
    • Ye, J. M. (1998). On measuring and correcting the effects of data mining and model selection. Journal of the American Statistical Association 93, 120-131.
    • (1998) Journal of the American Statistical Association , vol.93 , pp. 120-131
    • Ye, J.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.