메뉴 건너뛰기




Volumn 68, Issue 2, 2012, Pages 353-360

Penalized Generalized Estimating Equations for High-Dimensional Longitudinal Data Analysis

Author keywords

Correlated data; Diverging number of parameters; GEE; High dimensional covariates; Longitudinal data; Marginal regression; Variable selection

Indexed keywords

GENE EXPRESSION; INTELLIGENT SYSTEMS;

EID: 84862882955     PISSN: 0006341X     EISSN: 15410420     Source Type: Journal    
DOI: 10.1111/j.1541-0420.2011.01678.x     Document Type: Article
Times cited : (167)

References (25)
  • 1
    • 22944441282 scopus 로고    scopus 로고
    • Asymptotic results with generalized estimating equations for longitudinal data
    • Balan, R. M. and Schiopu-Kratina, I. (2005). Asymptotic results with generalized estimating equations for longitudinal data. Annals of Statistic 32, 522-541.
    • (2005) Annals of Statistic , vol.32 , pp. 522-541
    • Balan, R.M.1    Schiopu-Kratina, I.2
  • 2
    • 20744449127 scopus 로고    scopus 로고
    • Variable selection for marginal longitudinal generalized linear models
    • Cantoni, E., Flemming, J. M., and Ronchetti, E. (2005). Variable selection for marginal longitudinal generalized linear models. Biometrics 61, 507-514.
    • (2005) Biometrics , vol.61 , pp. 507-514
    • Cantoni, E.1    Flemming, J.M.2    Ronchetti, E.3
  • 3
    • 50949108781 scopus 로고    scopus 로고
    • Extended Bayesian information criterion for model selection with large model space
    • Chen, J. and Chen, Z. (2008). Extended Bayesian information criterion for model selection with large model space. Biometrika 95, 759-771.
    • (2008) Biometrika , vol.95 , pp. 759-771
    • Chen, J.1    Chen, Z.2
  • 4
    • 85153152169 scopus 로고    scopus 로고
    • Penalized quadratic inference function for variable selection in longitudinal research. Ph.D. Thesis, Department of Statistics, The Pennsylvania State University.
    • Dziak, J. J. (2006). Penalized quadratic inference function for variable selection in longitudinal research. Ph.D. Thesis, Department of Statistics, The Pennsylvania State University
    • (2006)
    • Dziak, J.J.1
  • 5
    • 84862855957 scopus 로고    scopus 로고
    • An overview on quadratic inference function approaches for longitudinal data
    • New Developments in Biostatistics and Bioinformatics, J. Fan, J. S. Liu, and X. Lin (eds), Chapter 3, 5 Toh Tuch Link, Singapore: World Scientific Publishing.
    • Dziak, J. J., Li, R., and Qu, A. (2009). An overview on quadratic inference function approaches for longitudinal data. In Frontiers of Statistics, Volume 1:New Developments in Biostatistics and Bioinformatics, J. Fan, J. S. Liu, and X. Lin (eds), Chapter 3, 49-72. 5 Toh Tuch Link, Singapore: World Scientific Publishing.
    • (2009) Frontiers of Statistics , vol.1 , pp. 49-72
    • Dziak, J.J.1    Li, R.2    Qu, A.3
  • 6
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association 96, 1348-1360.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 7
    • 4944267519 scopus 로고    scopus 로고
    • New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis
    • Fan, J. and Li, R. (2004). New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis. Journal of the American Statistical Association 99, 710-723.
    • (2004) Journal of the American Statistical Association , vol.99 , pp. 710-723
    • Fan, J.1    Li, R.2
  • 8
    • 24344502730 scopus 로고    scopus 로고
    • Nonconcave penalized likelihood with a diverging number of parameters
    • Fan, J. and Peng, H. (2004). Nonconcave penalized likelihood with a diverging number of parameters. Annals of Statistics 32, 928-961.
    • (2004) Annals of Statistics , vol.32 , pp. 928-961
    • Fan, J.1    Peng, H.2
  • 9
    • 49549096502 scopus 로고    scopus 로고
    • Penalized estimating equations
    • Fu, W. J. (2003). Penalized estimating equations. Biometrics 35, 109-148.
    • (2003) Biometrics , vol.35 , pp. 109-148
    • Fu, W.J.1
  • 10
    • 26444617168 scopus 로고    scopus 로고
    • Variable selection using MM algorithms
    • Hunter, D. R. and Li, R. (2005). Variable selection using MM algorithms. Annals of Statistic 33, 1617-1642.
    • (2005) Annals of Statistic , vol.33 , pp. 1617-1642
    • Hunter, D.R.1    Li, R.2
  • 11
    • 49549107073 scopus 로고    scopus 로고
    • Penalized estimating functions and variable selection in semiparametric regression models
    • Johnson, B., Lin, D. Y., and Zeng, D. (2008). Penalized estimating functions and variable selection in semiparametric regression models. Journal of the American Statistical Association 103, 672-680.
    • (2008) Journal of the American Statistical Association , vol.103 , pp. 672-680
    • Johnson, B.1    Lin, D.Y.2    Zeng, D.3
  • 12
    • 77649173768 scopus 로고
    • Longitudinal data analysis using generalized linear models
    • Liang, K. Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika 73, 12-22.
    • (1986) Biometrika , vol.73 , pp. 12-22
    • Liang, K.Y.1    Zeger, S.L.2
  • 13
    • 0037339264 scopus 로고    scopus 로고
    • Clustering of time-course gene expression data using a mixed-effects model with B-splines
    • Luan, Y. and Li, H. (2003). Clustering of time-course gene expression data using a mixed-effects model with B-splines. Bioinformatics 19, 474-482.
    • (2003) Bioinformatics , vol.19 , pp. 474-482
    • Luan, Y.1    Li, H.2
  • 14
    • 77949718272 scopus 로고    scopus 로고
    • Variable selection for semiparametric mixed models in longitudinal studies
    • Ni, X., Zhang, D., and Zhang, H. H. (2010). Variable selection for semiparametric mixed models in longitudinal studies. Biometrics 66, 79-88.
    • (2010) Biometrics , vol.66 , pp. 79-88
    • Ni, X.1    Zhang, D.2    Zhang, H.H.3
  • 15
    • 0035102570 scopus 로고    scopus 로고
    • Akaike's information criterion in generalized estimating equations
    • Pan, W. (2001). Akaike's information criterion in generalized estimating equations. Biometrics 57, 120-125.
    • (2001) Biometrics , vol.57 , pp. 120-125
    • Pan, W.1
  • 18
    • 79551587551 scopus 로고    scopus 로고
    • GEE analysis of clustered binary data with diverging number of covariates
    • Wang, L. (2011). GEE analysis of clustered binary data with diverging number of covariates. Annals of Statistics 39, 389-417.
    • (2011) Annals of Statistics , vol.39 , pp. 389-417
    • Wang, L.1
  • 19
    • 58149330577 scopus 로고    scopus 로고
    • Consistent model selection and data-driven smooth tests for longitudinal data in the estimating equations approach
    • Wang, L. and Qu, A. (2009). Consistent model selection and data-driven smooth tests for longitudinal data in the estimating equations approach. Journal of the Royal Statistical Society, Series B 71, 177-190.
    • (2009) Journal of the Royal Statistical Society, Series B , vol.71 , pp. 177-190
    • Wang, L.1    Qu, A.2
  • 20
    • 34547840186 scopus 로고    scopus 로고
    • Group SCAD regression analysis for microarray time course gene expression data
    • Wang, L., Chen, G., and Li, H. (2007). Group SCAD regression analysis for microarray time course gene expression data. Bioinformatics 23, 1486-1494.
    • (2007) Bioinformatics , vol.23 , pp. 1486-1494
    • Wang, L.1    Chen, G.2    Li, H.3
  • 21
    • 70149083959 scopus 로고    scopus 로고
    • Variable selection in nonparametric varying- coefficient models for analysis of repeated measurements
    • Wang, L., Li, H., and Huang, J. (2008). Variable selection in nonparametric varying- coefficient models for analysis of repeated measurements. Journal of the American Statistical Association 103, 1556-1569.
    • (2008) Journal of the American Statistical Association , vol.103 , pp. 1556-1569
    • Wang, L.1    Li, H.2    Huang, J.3
  • 22
    • 22944450368 scopus 로고    scopus 로고
    • Asymptotics for generalized estimating equations with large cluster sizes
    • Xie, M. and Yang, Y. (2003). Asymptotics for generalized estimating equations with large cluster sizes. The Annals of Statistics 31, 310-347.
    • (2003) The Annals of Statistics , vol.31 , pp. 310-347
    • Xie, M.1    Yang, Y.2
  • 23
    • 85153154409 scopus 로고    scopus 로고
    • A GEE based shrinkage estimation for the generalized linear model in longitudinal data analysis. Technical Report, Department of Mathematics, Hong Kong Baptist University, Hong Kong.
    • Xu, P., Wu, P., Wang, Y., and Zhu, L. X. (2010). A GEE based shrinkage estimation for the generalized linear model in longitudinal data analysis. Technical Report, Department of Mathematics, Hong Kong Baptist University, Hong Kong
    • (2010)
    • Xu, P.1    Wu, P.2    Wang, Y.3    Zhu, L.X.4
  • 24
    • 78651299013 scopus 로고    scopus 로고
    • Efficient estimation and model selection for the marginal generalized additive model for correlated data
    • To appear in.
    • Xue, L., Qu, A., and Zhou, J. (2010). Efficient estimation and model selection for the marginal generalized additive model for correlated data. To appear in Journal of the American Statistical Association.
    • (2010) Journal of the American Statistical Association
    • Xue, L.1    Qu, A.2    Zhou, J.3
  • 25
    • 77649284492 scopus 로고    scopus 로고
    • Nearly unbiased variable selection under minimax concave penalty
    • Zhang, C. H. (2010). Nearly unbiased variable selection under minimax concave penalty. Annals of Statistics 38, 894-942.
    • (2010) Annals of Statistics , vol.38 , pp. 894-942
    • Zhang, C.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.