-
2
-
-
55849091701
-
-
10.1063/1.3002335
-
M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik, J. Chem. Phys. 129, 174106 (2008). 10.1063/1.3002335
-
(2008)
J. Chem. Phys.
, vol.129
, pp. 174106
-
-
Mohseni, M.1
Rebentrost, P.2
Lloyd, S.3
Aspuru-Guzik, A.4
-
3
-
-
57249084574
-
-
10.1088/1367-2630/10/11/113019
-
M. B. Plenio and S. F. Huelga, New J. Phys. 10, 113019 (2008). 10.1088/1367-2630/10/11/113019
-
(2008)
New J. Phys.
, vol.10
, pp. 113019
-
-
Plenio, M.B.1
Huelga, S.F.2
-
4
-
-
63849198286
-
-
10.1088/1367-2630/11/3/033003
-
P. Rebentrost, M. Mohseni, I. Kassal, S. Lloyd, and A. Aspuru-Guzik, New J. Phys. 11, 033003 (2009). 10.1088/1367-2630/11/3/033003
-
(2009)
New J. Phys.
, vol.11
, pp. 033003
-
-
Rebentrost, P.1
Mohseni, M.2
Kassal, I.3
Lloyd, S.4
Aspuru-Guzik, A.5
-
10
-
-
78149446539
-
-
10.1088/1367-2630/12/10/105012
-
J. Wu, F. Liu, Y. Shen, J. Cao, and R. J. Silbey, New J. Phys. 12, 105012 (2010). 10.1088/1367-2630/12/10/105012
-
(2010)
New J. Phys.
, vol.12
, pp. 105012
-
-
Wu, J.1
Liu, F.2
Shen, Y.3
Cao, J.4
Silbey, R.J.5
-
11
-
-
84856738687
-
-
10.1021/jz201259v
-
J. Moix, J. Wu, P. Huo, D. Coker, and J. Cao, J. Phys. Chem. Lett. 2, 3045 (2011). 10.1021/jz201259v
-
(2011)
J. Phys. Chem. Lett.
, vol.2
, pp. 3045
-
-
Moix, J.1
Wu, J.2
Huo, P.3
Coker, D.4
Cao, J.5
-
12
-
-
79960208645
-
-
10.1021/ct200126d
-
C. Kreisbeck, T. Kramer, M. Rodriguez, and B. Hein, J. Chem. Theory Comput. 7, 2166 (2011). 10.1021/ct200126d
-
(2011)
J. Chem. Theory Comput.
, vol.7
, pp. 2166
-
-
Kreisbeck, C.1
Kramer, T.2
Rodriguez, M.3
Hein, B.4
-
14
-
-
81755171307
-
-
10.1021/jz201119j
-
G. Ritschel, J. Roden, W. T. Strunz, A. Aspuru-Guzik, and A. Eisfeld, J. Phys. Chem. Lett. 2, 2912 (2011). 10.1021/jz201119j
-
(2011)
J. Phys. Chem. Lett.
, vol.2
, pp. 2912
-
-
Ritschel, G.1
Roden, J.2
Strunz, W.T.3
Aspuru-Guzik, A.4
Eisfeld, A.5
-
19
-
-
84859010897
-
-
10.1103/PhysRevB.85.125424
-
F. Caruso, S. K. Saikin, E. Solano, S. Huelga, A. Aspuru-Guzik, and M. B. Plenio, Phys. Rev. B 85, 125424 (2012). 10.1103/PhysRevB.85.125424
-
(2012)
Phys. Rev. B
, vol.85
, pp. 125424
-
-
Caruso, F.1
Saikin, S.K.2
Solano, E.3
Huelga, S.4
Aspuru-Guzik, A.5
Plenio, M.B.6
-
21
-
-
79951533126
-
-
10.1021/jp109559p
-
J. Zhu, S. Kais, P. Rebentrost, and A. Aspuru-Guzik, J. Phys. Chem. B 115, 1531 (2011). 10.1021/jp109559p
-
(2011)
J. Phys. Chem. B
, vol.115
, pp. 1531
-
-
Zhu, J.1
Kais, S.2
Rebentrost, P.3
Aspuru-Guzik, A.4
-
22
-
-
68849123229
-
-
10.1103/PhysRevLett.103.058301
-
J. Roden, A. Eisfeld, W. Wolff, and W. T. Strunz, Phys. Rev. Lett. 103, 058301 (2009). 10.1103/PhysRevLett.103.058301
-
(2009)
Phys. Rev. Lett.
, vol.103
, pp. 058301
-
-
Roden, J.1
Eisfeld, A.2
Wolff, W.3
Strunz, W.T.4
-
23
-
-
83655193107
-
-
10.1088/0953-4075/44/24/245501
-
I. de Vega, J. Phys. B 44, 245501 (2011). 10.1088/0953-4075/44/24/245501
-
(2011)
J. Phys. B
, vol.44
, pp. 245501
-
-
De Vega, I.1
-
24
-
-
79959990317
-
-
10.1021/jp202619a
-
C. Olbrich, T. L. C. Jansen, J. Liebers, M. Aghtar, J. Strümpfer, K. Schulten, J. Knoester, and U. Kleinekathöfer, J. Phys. Chem. B 115, 8609 (2011). 10.1021/jp202619a
-
(2011)
J. Phys. Chem. B
, vol.115
, pp. 8609
-
-
Olbrich, C.1
Jansen, T.L.C.2
Liebers, J.3
Aghtar, M.4
Strümpfer, J.5
Schulten, K.6
Knoester, J.7
Kleinekathöfer, U.8
-
25
-
-
84856693455
-
-
10.1016/j.bpj.2011.12.021
-
S. Shim, P. Rebentrost, S. Valleau, and A. Aspuru-Guzik, Biophys. J. 102, 649 (2012). 10.1016/j.bpj.2011.12.021
-
(2012)
Biophys. J.
, vol.102
, pp. 649
-
-
Shim, S.1
Rebentrost, P.2
Valleau, S.3
Aspuru-Guzik, A.4
-
26
-
-
79960714414
-
-
10.1021/jz2007676
-
C. Olbrich, J. Strümpfer, K. Schulten, and U. Kleinekathöfer, J. Phys. Chem. Lett. 2, 1771 (2011). 10.1021/jz2007676
-
(2011)
J. Phys. Chem. Lett.
, vol.2
, pp. 1771
-
-
Olbrich, C.1
Strümpfer, J.2
Schulten, K.3
Kleinekathöfer, U.4
-
27
-
-
0342520879
-
-
10.1021/jp000077+
-
M. Wendling, T. Pullerits, M. A. Przyjalgowski, S. I. E. Vulto, T. J. Aartsma, R. van Grondelle, and H. van Amerongen, J. Phys. Chem. B 104, 5825 (2000). 10.1021/jp000077+
-
(2000)
J. Phys. Chem. B
, vol.104
, pp. 5825
-
-
Wendling, M.1
Pullerits, T.2
Przyjalgowski, M.A.3
Vulto, S.I.E.4
Aartsma, T.J.5
Van Grondelle, R.6
Van Amerongen, H.7
-
28
-
-
33749521844
-
-
10.1529/biophysj.105.079483
-
J. Adolphs and T. Renger, Biophys. J. 91, 2778 (2006). 10.1529/biophysj.105.079483
-
(2006)
Biophys. J.
, vol.91
, pp. 2778
-
-
Adolphs, J.1
Renger, T.2
-
31
-
-
41349092888
-
-
10.1103/PhysRevE.65.031919
-
A. Damjanović, I. Kosztin, U. Kleinekathöfer, and K. Schulten, Phys. Rev. E 65, 031919 (2002). 10.1103/PhysRevE.65.031919
-
(2002)
Phys. Rev. e
, vol.65
, pp. 031919
-
-
Damjanović, A.1
Kosztin, I.2
Kleinekathöfer, U.3
Schulten, K.4
-
36
-
-
4644302359
-
-
10.1063/1.1774986
-
R. Ramírez, T. López-Ciudad, P. Kumar P, and D. Marx, J. Chem. Phys. 121, 3973 (2004). 10.1063/1.1774986
-
(2004)
J. Chem. Phys.
, vol.121
, pp. 3973
-
-
Ramírez, R.1
López-Ciudad, T.2
Kumar, P.P.3
Marx, D.4
-
38
-
-
0003577043
-
-
1st ed. (Cambridge University Press), Vol.
-
L. Frommhold, Cambridge Monographs on Atomic, Molecular, and Chemical Physics, 1st ed. (Cambridge University Press, 1993), Vol. 2.
-
(1993)
Cambridge Monographs on Atomic, Molecular, and Chemical Physics
, vol.2
-
-
Frommhold, L.1
-
40
-
-
0002773426
-
On the calculation of time correlation functions
-
(Wiley)
-
B. J. Berne and G. D. Harp, " On the calculation of time correlation functions.," in Advances in Chemical Physics (Wiley, 1970), pp. 63-227.
-
(1970)
Advances in Chemical Physics
, pp. 63-227
-
-
Berne, B.J.1
Harp, G.D.2
-
41
-
-
84948963239
-
Vibrational population relaxation in liquids
-
(Wiley)
-
D. W. Oxtoby, " Vibrational population relaxation in liquids.," in Advances in Chemical Physics (Wiley, 1981), pp. 487-519.
-
(1981)
Advances in Chemical Physics
, pp. 487-519
-
-
Oxtoby, D.W.1
-
43
-
-
22944454297
-
-
10.1146/annurev.physchem.55.091602.094425
-
Y. Yan and R. Xu, Ann. Rev. Phys. Chem. 56, 187 (2005). 10.1146/annurev.physchem.55.091602.094425
-
(2005)
Ann. Rev. Phys. Chem.
, vol.56
, pp. 187
-
-
Yan, Y.1
Xu, R.2
-
45
-
-
84871222048
-
-
asym(ω) by two
-
asym(ω) by two.
-
-
-
-
46
-
-
84871186041
-
-
sym(ω)
-
sym(ω).
-
-
-
-
47
-
-
4244219252
-
-
10.1103/PhysRevLett.4.239
-
P. Schofield, Phys. Rev. Lett. 4, 239 (1960). 10.1103/PhysRevLett.4.239
-
(1960)
Phys. Rev. Lett.
, vol.4
, pp. 239
-
-
Schofield, P.1
-
48
-
-
0000226291
-
-
10.1080/00018736200101282
-
P. Egelstaff, Adv. Phys. 11, 203 (1962). 10.1080/00018736200101282
-
(1962)
Adv. Phys.
, vol.11
, pp. 203
-
-
Egelstaff, P.1
-
49
-
-
84871213463
-
-
Approximations such as the transition density cube (Ref.) can be employed to obtain couplings between the local excited states. More sophisticated models that include polarization effects (Refs. and) can also be employed for this purpose
-
Approximations such as the transition density cube (Ref.) can be employed to obtain couplings between the local excited states. More sophisticated models that include polarization effects (Refs. and) can also be employed for this purpose.
-
-
-
-
50
-
-
67849085239
-
-
10.1021/ja806853v
-
F. C. Spano, J. Am. Chem. Soc. 131, 4267 (2009). 10.1021/ja806853v
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 4267
-
-
Spano, F.C.1
-
53
-
-
79551628582
-
-
10.1063/1.3526749
-
J. Roden, A. Eisfeld, M. Dvořák, O. Bünermann, and F. Stienkemeier, J. Chem. Phys. 134, 054907 (2011). 10.1063/1.3526749
-
(2011)
J. Chem. Phys.
, vol.134
, pp. 054907
-
-
Roden, J.1
Eisfeld, A.2
Dvořák, M.3
Bünermann, O.4
Stienkemeier, F.5
-
55
-
-
84871254370
-
-
Note that there are two common approximations for which the information on the system bath coupling is entirely described by the two-time bath correlation function, namely, linear response theory and second order perturbation theory in system bath coupling
-
Note that there are two common approximations for which the information on the system bath coupling is entirely described by the two-time bath correlation function, namely, linear response theory and second order perturbation theory in system bath coupling.
-
-
-
-
56
-
-
84871231758
-
-
-1
-
-1.
-
-
-
-
59
-
-
84871235143
-
-
asym(ω) shown in Fig. panel (a), corresponds to the spectral density in Ref. if one multiplies the Shim result by π · tanh(ωβh/2)/ tanh(νβh/2) to obtain J(ω) (here ν = ω/(2π)). We would like to point out that a different convention was employed in Ref.
-
asym(ω) shown in Fig. panel (a), corresponds to the spectral density in Ref. if one multiplies the Shim result by π · tanh(ωβh/2)/ tanh(νβh/2) to obtain J(ω) (here ν = ω/(2π)). We would like to point out that a different convention was employed in Ref..
-
-
-
-
61
-
-
34547249785
-
-
10.1021/jp072540p
-
G. D. Scholes, C. Curutchet, B. Mennucci, R. Cammi, and J. Tomasi, J. Phys. Chem. B 111, 6978 (2007). 10.1021/jp072540p
-
(2007)
J. Phys. Chem. B
, vol.111
, pp. 6978
-
-
Scholes, G.D.1
Curutchet, C.2
Mennucci, B.3
Cammi, R.4
Tomasi, J.5
-
62
-
-
84871225765
-
-
See supplementary material at E-JCPSA6-137-003247 for the plots for all sites of the FMO complex as well as the corresponding data files for J(ω) in the harmonic approximation
-
See supplementary material at http://dx.doi.org/10.1063/1.4769079 E-JCPSA6-137-003247 for the plots for all sites of the FMO complex as well as the corresponding data files for J(ω) in the harmonic approximation.
-
-
-
-
63
-
-
77953318346
-
-
10.1021/ct100138k
-
J. Neugebauer, C. Curutchet, A. Muñoz Losa, and B. Mennucci, J. Chem. Theory Comput. 6, 1843 (2010). 10.1021/ct100138k
-
(2010)
J. Chem. Theory Comput.
, vol.6
, pp. 1843
-
-
Neugebauer, J.1
Curutchet, C.2
Muñoz Losa, A.3
Mennucci, B.4
|