메뉴 건너뛰기




Volumn 7, Issue 11, 2012, Pages

Nonparametric Method for Genomics-Based Prediction of Performance of Quantitative Traits Involving Epistasis in Plant Breeding

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; GENE DOSAGE; GENE MAPPING; GENETIC EPISTASIS; GENETIC MARKER; GENOMICS; GENOTYPE PHENOTYPE CORRELATION; KERNEL METHOD; MATHEMATICAL COMPUTING; NONPARAMETRIC TEST; PLANT BREEDING; PRINCIPAL COMPONENT ANALYSIS; QUANTITATIVE TRAIT; REPRODUCING KERNEL HILBERT SPACE REGRESSION; SIMULATION;

EID: 84870596541     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0050604     Document Type: Article
Times cited : (11)

References (45)
  • 1
    • 0001244316 scopus 로고
    • Marker assisted selection using best linear unbiased prediction
    • Fernando R, Grossman M, (1989) Marker assisted selection using best linear unbiased prediction. Genet Sel Evol 21: 467-477.
    • (1989) Genet Sel Evol , vol.21 , pp. 467-477
    • Fernando, R.1    Grossman, M.2
  • 2
    • 0035045051 scopus 로고    scopus 로고
    • Prediction of total genetic value using genome-wide dense marker maps
    • Meuwissen THE, Hayes BJ, Goddard ME, (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157: 1819-1829.
    • (2001) Genetics , vol.157 , pp. 1819-1829
    • Meuwissen, T.H.E.1    Hayes, B.J.2    Goddard, M.E.3
  • 4
    • 0037297614 scopus 로고    scopus 로고
    • Estimating polygenic effects using markers of the entire genome
    • Xu S, (2003) Estimating polygenic effects using markers of the entire genome. Genetics 163: 789-801.
    • (2003) Genetics , vol.163 , pp. 789-801
    • Xu, S.1
  • 5
    • 67849130524 scopus 로고    scopus 로고
    • Predicting quantitative traits with regression models for dense molecular markers and pedigrees
    • de los Campos G, Naya H, Gianola D, Crossa J, Legarra A, et al. (2009) Predicting quantitative traits with regression models for dense molecular markers and pedigrees. Genetics 182: 375-385.
    • (2009) Genetics , vol.182 , pp. 375-385
    • de los Campos, G.1    Naya, H.2    Gianola, D.3    Crossa, J.4    Legarra, A.5
  • 6
    • 67249092136 scopus 로고    scopus 로고
    • Epistatic models improve prediction of performance in corn
    • Dudley JW, Johnson GR, (2009) Epistatic models improve prediction of performance in corn. Crop Sci 49: 1533-1533.
    • (2009) Crop Sci , vol.49 , pp. 1533
    • Dudley, J.W.1    Johnson, G.R.2
  • 7
    • 0000046644 scopus 로고
    • An extension of the concept of partitioning hereditary variacne for analysis of covariances among relatives when epistasis is present
    • Cockerham CC, (1954) An extension of the concept of partitioning hereditary variacne for analysis of covariances among relatives when epistasis is present. Genetics 39: 859-882.
    • (1954) Genetics , vol.39 , pp. 859-882
    • Cockerham, C.C.1
  • 8
    • 45849117254 scopus 로고    scopus 로고
    • Reproducing kernel hilbert spaces regression methods for genomic assisted prediction of quantitative traits
    • Gianola D, van Kaam JBCHM, (2008) Reproducing kernel hilbert spaces regression methods for genomic assisted prediction of quantitative traits. Genetics 178: 2289-2303.
    • (2008) Genetics , vol.178 , pp. 2289-2303
    • Gianola, D.1    van Kaam, J.B.C.H.M.2
  • 9
    • 45849103551 scopus 로고    scopus 로고
    • Nonparametric methods for incorporating genomic information into genetic evaluations: an application to mortality in broilers
    • Gonzalez-Recio O, Gianola D, Long N, Weigel KA, Rosa GJM, et al. (2008) Nonparametric methods for incorporating genomic information into genetic evaluations: an application to mortality in broilers. Genetics 178: 2305-2313.
    • (2008) Genetics , vol.178 , pp. 2305-2313
    • Gonzalez-Recio, O.1    Gianola, D.2    Long, N.3    Weigel, K.A.4    Rosa, G.J.M.5
  • 10
    • 33746424900 scopus 로고    scopus 로고
    • Genomic-assisted prediction of genetic value with semiparametric procedures
    • Gianola D, Fernando RL, Stella A, (2006) Genomic-assisted prediction of genetic value with semiparametric procedures. Genetics 173: 1761-1776.
    • (2006) Genetics , vol.173 , pp. 1761-1776
    • Gianola, D.1    Fernando, R.L.2    Stella, A.3
  • 12
    • 77949831397 scopus 로고    scopus 로고
    • Genomic breeding value estimation using nonparametric additive regression models
    • Bennewitz J, Solberg T, Meuwissen T, (2009) Genomic breeding value estimation using nonparametric additive regression models. Genet Sel Evol 41: 20.
    • (2009) Genet Sel Evol , vol.41 , pp. 20
    • Bennewitz, J.1    Solberg, T.2    Meuwissen, T.3
  • 13
    • 0000570382 scopus 로고
    • On estimating regression
    • Nadaraya E, (1964) On estimating regression. Theor Probab Appl 9: 141-142.
    • (1964) Theor Probab Appl , vol.9 , pp. 141-142
    • Nadaraya, E.1
  • 14
    • 0001762424 scopus 로고
    • Smooth regression analysis
    • Watson G, (1964) Smooth regression analysis. Sankhya A 26: 359-372.
    • (1964) Sankhya A , vol.26 , pp. 359-372
    • Watson, G.1
  • 19
    • 77952995139 scopus 로고    scopus 로고
    • Using eigenvalues as variance priors in the prediction of genomic breeding values by principal component analysis
    • Macciotta NPP, Gaspa G, Steri R, Nicolazzi EL, Dimauro C, et al. (2010) Using eigenvalues as variance priors in the prediction of genomic breeding values by principal component analysis. J Dairy Sci 93: 2765-2774.
    • (2010) J Dairy Sci , vol.93 , pp. 2765-2774
    • Macciotta, N.P.P.1    Gaspa, G.2    Steri, R.3    Nicolazzi, E.L.4    Dimauro, C.5
  • 20
    • 79960330842 scopus 로고    scopus 로고
    • Pre-selection of most significant SNPS for the estimation of genomic breeding values
    • Macciotta N, Gaspa G, Steri R, Pieramati C, Carnier P, et al. (2009) Pre-selection of most significant SNPS for the estimation of genomic breeding values. BMC Proc 3: S14.
    • (2009) BMC Proc , vol.3
    • Macciotta, N.1    Gaspa, G.2    Steri, R.3    Pieramati, C.4    Carnier, P.5
  • 22
    • 36849010721 scopus 로고    scopus 로고
    • Machine learning classification procedure for selecting SNPs in genomic selection: application to early mortality in broilers
    • Long N, Gianola D, Rosa GJM, Weigel KA, Avendaño S, (2007) Machine learning classification procedure for selecting SNPs in genomic selection: application to early mortality in broilers. J Anim Breed Genet 124: 377-389.
    • (2007) J Anim Breed Genet , vol.124 , pp. 377-389
    • Long, N.1    Gianola, D.2    Rosa, G.J.M.3    Weigel, K.A.4    Avendaño, S.5
  • 24
    • 78649325488 scopus 로고    scopus 로고
    • Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers
    • Crossa J, de los Campos G, Perez P, Gianola D, Burgueno J, et al. (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186: 713-724.
    • (2010) Genetics , vol.186 , pp. 713-724
    • Crossa, J.1    de los Campos, G.2    Perez, P.3    Gianola, D.4    Burgueno, J.5
  • 25
    • 34548176501 scopus 로고    scopus 로고
    • Prospects for genomewide selection for quantitative traits in maize
    • Bernardo R, Yu J, (2007) Prospects for genomewide selection for quantitative traits in maize. Crop Sci 47: 1082-1090.
    • (2007) Crop Sci , vol.47 , pp. 1082-1090
    • Bernardo, R.1    Yu, J.2
  • 26
    • 33751319169 scopus 로고    scopus 로고
    • Genetic dissection of intermated recombinant inbred lines using a new genetic map of maize
    • Fu Y, Wen TJ, Ronin YI, Chen HD, Guo L, et al. (2006) Genetic dissection of intermated recombinant inbred lines using a new genetic map of maize. Genetics 174: 1671-1683.
    • (2006) Genetics , vol.174 , pp. 1671-1683
    • Fu, Y.1    Wen, T.J.2    Ronin, Y.I.3    Chen, H.D.4    Guo, L.5
  • 27
    • 0000732266 scopus 로고
    • The estimation of map distance from recombination values
    • Kosambi DD, (1944) The estimation of map distance from recombination values. Annals of Eugenics 12: 172-175.
    • (1944) Annals of Eugenics , vol.12 , pp. 172-175
    • Kosambi, D.D.1
  • 28
    • 17444397012 scopus 로고    scopus 로고
    • Modeling quantitative trait loci and interpretation of models
    • Zeng ZB, Wang T, Zou W, (2005) Modeling quantitative trait loci and interpretation of models. Genetics 169: 1711-1725.
    • (2005) Genetics , vol.169 , pp. 1711-1725
    • Zeng, Z.B.1    Wang, T.2    Zou, W.3
  • 29
    • 0025217786 scopus 로고
    • Efficiency of marker-assisted selection in the improvement of quantitative traits
    • Lande R, Thompson R, (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124: 743-756.
    • (1990) Genetics , vol.124 , pp. 743-756
    • Lande, R.1    Thompson, R.2
  • 32
    • 84870613243 scopus 로고    scopus 로고
    • R package version 1.1-7. Available,. Accessed 2012 Oct 30
    • Gu C (2011) gss: General Smoothing Splines. R package version 1.1-7. Available: http://CRAN.R-project.org/package=gss. Accessed 2012 Oct 30.
    • (2011) Gss: General Smoothing Splines
    • Gu, C.1
  • 33
    • 41149087694 scopus 로고    scopus 로고
    • coda: output analysis and diagnostics for MCMC
    • Plummer M, Best N, Cowles K, Vines K, (2006) coda: output analysis and diagnostics for MCMC. R News 6: 7-11.
    • (2006) R News , vol.6 , pp. 7-11
    • Plummer, M.1    Best, N.2    Cowles, K.3    Vines, K.4
  • 35
    • 78649959694 scopus 로고    scopus 로고
    • Identifying differentially expressed genes in time course microarray data
    • Ma P, Zhong WX, Liu JS, (2009) Identifying differentially expressed genes in time course microarray data. Stat in Biosciences 1: 144-159.
    • (2009) Stat in Biosciences , vol.1 , pp. 144-159
    • Ma, P.1    Zhong, W.X.2    Liu, J.S.3
  • 36
    • 78951477718 scopus 로고    scopus 로고
    • Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods
    • de los Campos G, Gianola D, Rosa JMG, Weigel AK, Crossa J, (2010) Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods. Genet Res 92: 295-308.
    • (2010) Genet Res , vol.92 , pp. 295-308
    • de los Campos, G.1    Gianola, D.2    Rosa, J.M.G.3    Weigel, A.K.4    Crossa, J.5
  • 37
    • 23744488295 scopus 로고    scopus 로고
    • Optimal smoothing in nonparametric mixed-effect models
    • Gu C, Ma P, (2005) Optimal smoothing in nonparametric mixed-effect models. Annals of Statistics 33: 1357-1379.
    • (2005) Annals of Statistics , vol.33 , pp. 1357-1379
    • Gu, C.1    Ma, P.2
  • 38
    • 79951530319 scopus 로고    scopus 로고
    • The Bayesian lasso for genome-wide association studies
    • Li J, Das K, Fu G, Li R, Wu R, (2011) The Bayesian lasso for genome-wide association studies. Bioinformatics 27: 516-523.
    • (2011) Bioinformatics , vol.27 , pp. 516-523
    • Li, J.1    Das, K.2    Fu, G.3    Li, R.4    Wu, R.5
  • 39
    • 72449137120 scopus 로고    scopus 로고
    • The accuracy of genomic selection in norwegian red cattle assessed by cross validation
    • Luan T, Woolliams JA, Lien S, Kent M, Svendsen M, et al. (2009) The accuracy of genomic selection in norwegian red cattle assessed by cross validation. Genetics 183: 1119-1126.
    • (2009) Genetics , vol.183 , pp. 1119-1126
    • Luan, T.1    Woolliams, J.A.2    Lien, S.3    Kent, M.4    Svendsen, M.5
  • 41
    • 0035058585 scopus 로고    scopus 로고
    • Haplotypes vs single marker linkage disequilibrium tests: what do we gain?
    • Akey J, Jin L, Xiong M, (2001) Haplotypes vs single marker linkage disequilibrium tests: what do we gain? Eur J Hum Genet 9: 291-300.
    • (2001) Eur J Hum Genet , vol.9 , pp. 291-300
    • Akey, J.1    Jin, L.2    Xiong, M.3
  • 42
    • 36849093104 scopus 로고    scopus 로고
    • Accuracy of genomic selection using different methods to define haplotypes
    • Calus MPL, Meuwissen THE, de Roos APW, Veerkamp RF, (2008) Accuracy of genomic selection using different methods to define haplotypes. Genetics 178: 553-561.
    • (2008) Genetics , vol.178 , pp. 553-561
    • Calus, M.P.L.1    Meuwissen, T.H.E.2    de Roos, A.P.W.3    Veerkamp, R.F.4
  • 44
    • 34249023066 scopus 로고    scopus 로고
    • Genomewide analysis of epistatic effects for quantitative traits in barley
    • Xu S, Jia Z, (2007) Genomewide analysis of epistatic effects for quantitative traits in barley. Genetics 175: 1955-1963.
    • (2007) Genetics , vol.175 , pp. 1955-1963
    • Xu, S.1    Jia, Z.2
  • 45
    • 78649631990 scopus 로고    scopus 로고
    • Detection of epistatic interactions between exotic alleles introgressed from wild barley (H. vulgare ssp. spontaneum)
    • Von Korff M, Léon J, Pillen K, (2010) Detection of epistatic interactions between exotic alleles introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet 121: 1455-1464.
    • (2010) Theor Appl Genet , vol.121 , pp. 1455-1464
    • Von Korff, M.1    Léon, J.2    Pillen, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.