-
11
-
-
85038341172
-
-
unpublished
-
X.-G. Wen, (unpublished).
-
-
-
Wen, X.-G.1
-
20
-
-
0000643010
-
-
N. P. Ong, Z. Z. Wang, J. C. J. M. Tarascon, L. H. Greene, and W. R. McKinnon, Phys. Rev. B 35, 8807 (1987).
-
(1987)
Phys. Rev. B
, vol.35
, pp. 8807
-
-
Ong, N.P.1
Wang, Z.Z.2
Tarascon, J.C.J.M.3
Greene, L.H.4
McKinnon, W.R.5
-
21
-
-
4243164592
-
-
W. N. Hardy, D. A. Bonn, D. C. Morgan, R. Liang, and K. Zhang, Phys. Rev. Lett. 70, 3999 (1993).
-
(1993)
Phys. Rev. Lett.
, vol.70
, pp. 3999
-
-
Hardy, W.N.1
Bonn, D.A.2
Morgan, D.C.3
Liang, R.4
Zhang, K.5
-
25
-
-
0039224686
-
-
A. G. Loeser, et al., Science 273, 325 (1996).
-
(1996)
Science
, vol.273
, pp. 325
-
-
Loeser, A.G.1
-
26
-
-
0009122385
-
-
J. M. Harris, Z.-X. Shen, P. J. White, D. S. Marshall, and M. C. Schabel, Phys. Rev. B 54, 665 (1996).
-
(1996)
Phys. Rev. B
, vol.54
, pp. 665
-
-
Harris, J.M.1
Shen, Z.-X.2
White, P.J.3
Marshall, D.S.4
Schabel, M.C.5
-
29
-
-
0034685816
-
-
P. Bourges, et al., Science 288, 1234 (2000).
-
(2000)
Science
, vol.288
, pp. 1234
-
-
Bourges, P.1
-
30
-
-
0035135126
-
-
P. Dai, H. A. Mook, R. D. Hunt, and F. Doan, Phys. Rev. B 63, 054525 (2001).
-
(2001)
Phys. Rev. B
, vol.63
, pp. 54525
-
-
Dai, P.1
Mook, H.A.2
Hunt, R.D.3
Doan, F.4
-
36
-
-
25744466740
-
-
I. Affleck, Z. Zou, T. Hsu, and P. W. Anderson, Phys. Rev. B 38, 745 (1988).
-
(1988)
Phys. Rev. B
, vol.38
, pp. 745
-
-
Affleck, I.1
Zou, Z.2
Hsu, T.3
Anderson, P.W.4
-
45
-
-
0000143230
-
-
Z. Y. Weng, D. N. Sheng, Y. C. Chen, and C. S. Ting, Phys. Rev. B 55, 3894 (1997).
-
(1997)
Phys. Rev. B
, vol.55
, pp. 3894
-
-
Weng, Z.Y.1
Sheng, D.N.2
Chen, Y.C.3
Ting, C.S.4
-
52
-
-
0000957836
-
-
G. J. Chen, R. Joynt, F. C. Zhang, and C. Gros, Phys. Rev. B 42, 2662 (1990).
-
(1990)
Phys. Rev. B
, vol.42
, pp. 2662
-
-
Chen, G.J.1
Joynt, R.2
Zhang, F.C.3
Gros, C.4
-
53
-
-
0000641412
-
-
G. Misguich, C. Lhuillier, B. Bernu, and C. Waldtmann, Phys. Rev. B 60, 1064 (1999).
-
(1999)
Phys. Rev. B
, vol.60
, pp. 1064
-
-
Misguich, G.1
Lhuillier, C.2
Bernu, B.3
Waldtmann, C.4
-
56
-
-
0035251902
-
-
R. Coldea, D. Tennant, A. Tsvelik, and Z. Tylczynski, Phys. Rev. Lett. 86, 1335 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 1335
-
-
Coldea, R.1
Tennant, D.2
Tsvelik, A.3
Tylczynski, Z.4
-
59
-
-
85038345463
-
-
unpublished
-
X.-G. Wen (unpublished).
-
-
-
Wen, X.-G.1
-
69
-
-
0001586890
-
-
H. Yoshizawa, S. Mitsuda, H. Kitazawa, and K. Katsumata, J. Phys. Soc. Jpn. 57, 3686 (1988).
-
(1988)
J. Phys. Soc. Jpn.
, vol.57
, pp. 3686
-
-
Yoshizawa, H.1
Mitsuda, S.2
Kitazawa, H.3
Katsumata, K.4
-
72
-
-
0030786236
-
-
H. F. Fong, B. Keimer, D. L. Milius, and I. A. Aksay, Phys. Rev. Lett. 78, 713 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 713
-
-
Fong, H.F.1
Keimer, B.2
Milius, D.L.3
Aksay, I.A.4
-
75
-
-
0000454505
-
-
H. Fong, et al., Phys. Rev. B 61, 14 773 (2000).
-
(2000)
Phys. Rev. B
, vol.61
, pp. 14 773
-
-
Fong, H.1
-
93
-
-
85038310696
-
-
A more precise definition of quantum order is given in Ref. 11
-
A more precise definition of quantum order is given in Ref. 11.
-
-
-
-
94
-
-
85038287617
-
-
Landau’s theory may not even be able to describe all the classical orders. Some classical phase transitions, such as the Kosterliz-Thouless transition, do not change any symmetries
-
Landau’s theory may not even be able to describe all the classical orders. Some classical phase transitions, such as the Kosterliz-Thouless transition, do not change any symmetries.
-
-
-
-
95
-
-
85038320411
-
-
this paper we will distinguish the invariance of an Ansatz and the symmetry of an Ansatz. We say an Ansatz has a translation invariance when the Ansatz itself does not change under translation. We say an Ansatz has a translation symmetry when the physical spin wave function obtained from the Ansatz has a translation symmetry
-
In this paper we will distinguish the invariance of an Ansatz and the symmetry of an Ansatz. We say an Ansatz has a translation invariance when the Ansatz itself does not change under translation. We say an Ansatz has a translation symmetry when the physical spin wave function obtained from the Ansatz has a translation symmetry.
-
-
-
-
96
-
-
85038336155
-
-
his unpublished study of quantum antiferromagnetism with a symmetry group of large rank, Wiegmenn (Ref. 92) constructed a gauge theory which realizes a double-valued magnetic space group. The double-valued magnetic space group extends the space group and is a special case of the protective symmetry group
-
In his unpublished study of quantum antiferromagnetism with a symmetry group of large rank, Wiegmenn (Ref. 92) constructed a gauge theory which realizes a double-valued magnetic space group. The double-valued magnetic space group extends the space group and is a special case of the protective symmetry group.
-
-
-
-
97
-
-
85038305856
-
-
We need to integrate out the phase of the φ field to get a gauge-invariant result
-
We need to integrate out the phase of the φ field to get a gauge-invariant result.
-
-
-
|