-
1
-
-
4243813116
-
-
June
-
For a thorough introduction, see B. Batlogg, Phys. Today 44, 44 (June 1991).
-
(1991)
Phys. Today
, vol.44
, pp. 44
-
-
Batlogg, B.1
-
2
-
-
43949158645
-
-
J. W. Loram, K. A. Mirza, J. M. Wade, J. R. Cooper, W. Y. Liang, Physica C 235, 134 (1994); J. L. Talion, J. R. Cooper, P. S. I. P. N. de Silva, G. V. M. Williams, J. W. Loram, Phys. Rev. Lett 75, 4114 (1995).
-
(1994)
Physica C
, vol.235
, pp. 134
-
-
Loram, J.W.1
Mirza, K.A.2
Wade, J.M.3
Cooper, J.R.4
Liang, W.Y.5
-
3
-
-
0000954297
-
-
J. W. Loram, K. A. Mirza, J. M. Wade, J. R. Cooper, W. Y. Liang, Physica C 235, 134 (1994); J. L. Talion, J. R. Cooper, P. S. I. P. N. de Silva, G. V. M. Williams, J. W. Loram, Phys. Rev. Lett 75, 4114 (1995).
-
(1995)
Phys. Rev. Lett
, vol.75
, pp. 4114
-
-
Talion, J.L.1
Cooper, J.R.2
De Silva, P.S.I.P.N.3
Williams, G.V.M.4
Loram, J.W.5
-
4
-
-
0000434333
-
-
private communication
-
T. Timusk, private communication. An earlier work done with this technique is L. D. Rotter et al., Phys. Rev. Lett. 67, 2741 (1991).
-
-
-
Timusk, T.1
-
5
-
-
0000434333
-
-
T. Timusk, private communication. An earlier work done with this technique is L. D. Rotter et al., Phys. Rev. Lett. 67, 2741 (1991).
-
(1991)
Phys. Rev. Lett.
, vol.67
, pp. 2741
-
-
Rotter, L.D.1
-
6
-
-
0342789022
-
-
H. Y. Hwang et al., Phys. Rev. Lett. 72, 2636 (1994); B. Batlogg et al., Physica C 235, 130 (1994).
-
(1994)
Phys. Rev. Lett.
, vol.72
, pp. 2636
-
-
Hwang, H.Y.1
-
7
-
-
43949160013
-
-
H. Y. Hwang et al., Phys. Rev. Lett. 72, 2636 (1994); B. Batlogg et al., Physica C 235, 130 (1994).
-
(1994)
Physica C
, vol.235
, pp. 130
-
-
Batlogg, B.1
-
8
-
-
33744567723
-
-
M. Takigawa, P. C. Hammel, R. H. Heffner, Z. Fisk, Phys. Rev. B 43, 247 (1991); M. Takigawa, ibid. 49, 4158 (1994); T. Imai et al., Physica C 162, 169 (1989).
-
(1991)
Phys. Rev. B
, vol.43
, pp. 247
-
-
Takigawa, M.1
Hammel, P.C.2
Heffner, R.H.3
Fisk, Z.4
-
9
-
-
0001296948
-
-
M. Takigawa, P. C. Hammel, R. H. Heffner, Z. Fisk, Phys. Rev. B 43, 247 (1991); M. Takigawa, ibid. 49, 4158 (1994); T. Imai et al., Physica C 162, 169 (1989).
-
(1994)
Phys. Rev. B
, vol.49
, pp. 4158
-
-
Takigawa, M.1
-
10
-
-
0024927842
-
-
M. Takigawa, P. C. Hammel, R. H. Heffner, Z. Fisk, Phys. Rev. B 43, 247 (1991); M. Takigawa, ibid. 49, 4158 (1994); T. Imai et al., Physica C 162, 169 (1989).
-
(1989)
Physica C
, vol.162
, pp. 169
-
-
Imai, T.1
-
12
-
-
0041972520
-
-
Z.-X. Shen et al., Phys. Rev. Lett. 70, 1553 (1993); G. D. Mahan, D. S. Dessau, Z.-X. Shen, D. S. Marshall, ibid. 71, 4277 (1993); (20); and references therein.
-
(1993)
Phys. Rev. Lett.
, vol.70
, pp. 1553
-
-
Shen, Z.-X.1
-
13
-
-
4243113930
-
-
(20); and references therein
-
Z.-X. Shen et al., Phys. Rev. Lett. 70, 1553 (1993); G. D. Mahan, D. S. Dessau, Z.-X. Shen, D. S. Marshall, ibid. 71, 4277 (1993); (20); and references therein.
-
(1993)
Phys. Rev. Lett.
, vol.71
, pp. 4277
-
-
Mahan, G.D.1
Dessau, D.S.2
Shen, Z.-X.3
Marshall, D.S.4
-
15
-
-
0004101722
-
-
Springer-Verlag, Berlin
-
For an introduction to the experimental technique, see S. Hüfner, Photoelectron Spectroscopy (Springer-Verlag, Berlin, 1995).
-
(1995)
Photoelectron Spectroscopy
-
-
Hüfner, S.1
-
16
-
-
0000079315
-
-
If the electronic structure is not two-dimensional, the line shape will also have broadening due to the photo-hole lifetime; see N. V. Smith et al., Phys. Rev. B 47, 15476 (1993).
-
(1993)
Phys. Rev. B
, vol.47
, pp. 15476
-
-
Smith, N.V.1
-
17
-
-
8944238965
-
-
note
-
11 torr. With 22.4-eV photons, the total energy resolution was typically 25 to 35 meV, and the angular resolution was ±1°. A gold reference sample facilitated energy resolution and Fermi energy measurement to within ±1 meV, and the temperature was known to be accurate to within a few kelvin.
-
-
-
-
18
-
-
8944242594
-
-
note
-
c curve.
-
-
-
-
19
-
-
0000051242
-
-
D. B. Mitzi, L. W. Lombardo, A. Kapitulnik, S. S. Laderman, R. D. Jacowitz, Phys. Rev. B 41, 6564 (1990).
-
(1990)
Phys. Rev. B
, vol.41
, pp. 6564
-
-
Mitzi, D.B.1
Lombardo, L.W.2
Kapitulnik, A.3
Laderman, S.S.4
Jacowitz, R.D.5
-
22
-
-
8944241293
-
-
note
-
F ARPES spectra of HTS materials exhibit, to a greater or lesser degree, an unexplained step function. The leading edge is roughly 50 meV broad, with the midpoint at a binding energy of roughly 20 to 25 meV. For a spectrum near pure background, see the 40% spectrum in Fig. 3A for sample a, cut β.
-
-
-
-
23
-
-
8944241760
-
-
note
-
One last concern is the possibility that sample a (and similar ones) is bad, in the sense that the spectra are not representative of an underdoped superconductor. In a photoemission experiment, broad, seemingly washed out features are often a sign of a poor sample surface. Whereas the normal-state spectra in Fig. 6 have weak features and lose weight at a receded energy in the manner of sample a in Fig. 3, the superconducting-state spectra show the behavior typical for an overdoped superconductor. The sharp feature, essentially resolution-limited, has a width similar to that in overdoped spectra. One knows that there is not sufficient scattering to affect the momentum resolution (and thus smear out the leading edge) because of the clear momentum dependence of the spectra in Fig. 6. A similar conclusion can be drawn from Fig. 3, sample a, cut α.
-
-
-
-
24
-
-
38749120324
-
-
and references therein
-
For an analysis of this line shape, see D. S. Dessau et al., Phys. Rev. B 45, 5095 (1992), and references therein.
-
(1992)
Phys. Rev. B
, vol.45
, pp. 5095
-
-
Dessau, D.S.1
-
26
-
-
0010074199
-
-
M. R. Norman, M. Randeria, H. Ding, J. C. Campuzano, A. F. Bellman, ibid. 52, 15107 (1995).
-
(1995)
Phys. Rev. B
, vol.52
, pp. 15107
-
-
Norman, M.R.1
Randeria, M.2
Ding, H.3
Campuzano, J.C.4
Bellman, A.F.5
-
28
-
-
0029490293
-
Proceedings of the 1995 Stanford Conference on Spectroscopies in Novel Superconductors
-
Proceedings of the 1995 Stanford Conference on Spectroscopies in Novel Superconductors, J. Phys. Chem. Solids 56 (1995).
-
(1995)
J. Phys. Chem. Solids
, vol.56
-
-
-
32
-
-
8944246313
-
-
thesis, Stanford University
-
D. S. Marshall, thesis, Stanford University (1996).
-
(1996)
-
-
Marshall, D.S.1
-
33
-
-
8944235339
-
-
T. M. Rice, J. Less-Common Met. 164 1439 (1990); X.-G. Wen and P. A. Lee, Phys. Rev. Lett. 76, 503 (1995); L. D. loffe and A. J. Millis, in (22), p. 1611.
-
(1990)
J. Less-Common Met.
, vol.164
, pp. 1439
-
-
Rice, T.M.1
-
34
-
-
4243394128
-
-
T. M. Rice, J. Less-Common Met. 164 1439 (1990); X.-G. Wen and P. A. Lee, Phys. Rev. Lett. 76, 503 (1995); L. D. loffe and A. J. Millis, in (22), p. 1611.
-
(1995)
Phys. Rev. Lett.
, vol.76
, pp. 503
-
-
Wen, X.-G.1
Lee, P.A.2
-
35
-
-
8944235339
-
-
T. M. Rice, J. Less-Common Met. 164 1439 (1990); X.-G. Wen and P. A. Lee, Phys. Rev. Lett. 76, 503 (1995); L. D. loffe and A. J. Millis, in (22), p. 1611.
-
Phys. Rev. Lett.
, Issue.22
, pp. 1611
-
-
Loffe, L.D.1
Millis, A.J.2
-
39
-
-
33744600400
-
-
T. Tanamoto, K. Kohno, H. Fukuyama, J. Phys. Soc. Jpn. 61 1886 (1992); G. Kotliar and J. Liu, Phys. Rev. B 38, 5142 (1988).
-
(1992)
J. Phys. Soc. Jpn.
, vol.61
, pp. 1886
-
-
Tanamoto, T.1
Kohno, K.2
Fukuyama, H.3
-
40
-
-
0001358225
-
-
T. Tanamoto, K. Kohno, H. Fukuyama, J. Phys. Soc. Jpn. 61 1886 (1992); G. Kotliar and J. Liu, Phys. Rev. B 38, 5142 (1988).
-
(1988)
Phys. Rev. B
, vol.38
, pp. 5142
-
-
Kotliar, G.1
Liu, J.2
-
42
-
-
4243241491
-
-
N. Trivedi and M. Randeria, Phys. Rev. Lett. 75, 312 (1995); M. Randeria, N.Trivedi, A. Moreo, R. T. Scalettar, ibid. 69, 2001 (1992).
-
(1995)
Phys. Rev. Lett.
, vol.75
, pp. 312
-
-
Trivedi, N.1
Randeria, M.2
-
43
-
-
0042703101
-
-
N. Trivedi and M. Randeria, Phys. Rev. Lett. 75, 312 (1995); M. Randeria, N.Trivedi, A. Moreo, R. T. Scalettar, ibid. 69, 2001 (1992).
-
(1992)
Phys. Rev. Lett.
, vol.69
, pp. 2001
-
-
Randeria, M.1
Trivedi, N.2
Moreo, A.3
Scalettar, R.T.4
-
44
-
-
8944238467
-
-
unpublished results
-
D. S. Marshall et al., unpublished results.
-
-
-
Marshall, D.S.1
-
46
-
-
8944236530
-
-
note
-
We gratefully acknowledge discussions with S. Kivelson, R. B. Laughlin, P. A. Lee, X.-G. Wen, S. Doniach, H. Fukuyama, N. Nagaosa, A. J. Millis, D. J. Scalapino, and N. Bulut. The data presented here were obtained from the Stanford Synchrotron Radiation Laboratory (SSRL), which is operated by the U.S. Department of Energy (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences. The Office's Division of Materials Science has provided support for this research. The Stanford work was also supported by NSF grants DMR-9311566 and DMR-9357507. Beamline 5 of SSRL was built with DARPA, ONR, AFOSR, AOR, DOE, and NSF support.
-
-
-
|