-
2
-
-
0015586907
-
-
P. W. Anderson, Mater. Res. Bull. 8, 153 (1973); P. Fazekas and P. W. Anderson, Philos. Mag. 30, 23 (1974).
-
(1973)
Mater. Res. Bull.
, vol.8
, pp. 153
-
-
Anderson, P.W.1
-
5
-
-
0001136860
-
-
G. Baskaran and P. W. Anderson, Phys. Rev. B 37, 580 (1988); P. A. Lee, Physica (Amsterdam) 317-318C, 194 (1999), and references therein.
-
(1988)
Phys. Rev. B
, vol.37
, pp. 580
-
-
Baskaran, G.1
Anderson, P.W.2
-
6
-
-
0001136860
-
-
Amsterdam
-
G. Baskaran and P. W. Anderson, Phys. Rev. B 37, 580 (1988); P. A. Lee, Physica (Amsterdam) 317-318C, 194 (1999), and references therein.
-
(1999)
Physica
, vol.317-318 C
, pp. 194
-
-
Lee, P.A.1
-
9
-
-
0003523410
-
-
Addison-Wesley, Redwood City, CA
-
See, e.g., E. Fradkin, Field Theories of Condensed Matter Systems (Addison-Wesley, Redwood City, CA, 1991). A more complete treatment is C. L. Henley (unpublished).
-
(1991)
Field Theories of Condensed Matter Systems
-
-
Fradkin, E.1
-
10
-
-
14344282487
-
-
unpublished
-
See, e.g., E. Fradkin, Field Theories of Condensed Matter Systems (Addison-Wesley, Redwood City, CA, 1991). A more complete treatment is C. L. Henley (unpublished).
-
-
-
Henley, C.L.1
-
11
-
-
4243780937
-
-
F. D. M. Haldane, Phys. Rev. Lett. 61, 1029 (1988); N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).
-
(1988)
Phys. Rev. Lett.
, vol.61
, pp. 1029
-
-
Haldane, F.D.M.1
-
12
-
-
33744631045
-
-
F. D. M. Haldane, Phys. Rev. Lett. 61, 1029 (1988); N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).
-
(1989)
Phys. Rev. Lett.
, vol.62
, pp. 1694
-
-
Read, N.1
Sachdev, S.2
-
18
-
-
33847600526
-
-
T. Senthil and M. P. A. Fisher, cond-mat/9912380
-
T. Senthil and M. P. A. Fisher, cond-mat/9912380.
-
-
-
-
22
-
-
36749117241
-
-
N.Y.
-
See, e.g., S. Samuel, J. Math. Phys. (N.Y.) 21, 2806 (1980). Our results for the triangular lattice have not, to our knowledge, appeared previously in the literature; we expect to report more details elsewhere.
-
(1980)
J. Math. Phys.
, vol.21
, pp. 2806
-
-
Samuel, S.1
-
23
-
-
14344281326
-
-
note
-
Gaplessness on the square lattice relies on two ingredients in a single-mode calculation: a conservation law, which is present in our case too, for the Hamiltonian only creates and destroys pairs of parallel neighboring dimers and that the conserved quantity, defined in Fig. 2, has an extensive expectation value in a ground state. The conserved quantity is always subextensive on the triangular lattice, at most O(L), and the resonons are gapped.
-
-
-
-
24
-
-
14344268484
-
-
note
-
The corresponding gap in the square lattice staggered phase is O(L), which therefore has no local excitations in the thermodynamic limit.
-
-
-
-
25
-
-
14344268864
-
-
note
-
There are similar mappings for the square and hexagonal lattice dimer models [9].
-
-
-
-
27
-
-
14344269260
-
-
note
-
This is also true at the RK point on the square lattice and is implicit in the results of [6] - note the remarkable feature that raising the temperature confines the spinons. Elsewhere in the square lattice phase diagram, the spinons are confined.
-
-
-
-
30
-
-
33847598439
-
-
R. Coldea et al., cond-mat/0007172
-
R. Coldea et al., cond-mat/0007172.
-
-
-
|