-
2
-
-
55449132839
-
Do mesenchymal stromal cells trans-differentiate into functional cardiomyocytes?
-
Rose RA, Keating A, Backx PH. Do mesenchymal stromal cells trans-differentiate into functional cardiomyocytes? Circ Res 2008;103:e120.
-
(2008)
Circ Res
, vol.103
-
-
Rose, R.A.1
Keating, A.2
Backx, P.H.3
-
3
-
-
73649148021
-
Human bone marrow stem cells co-cultured with neonatal rat cardiomyocytes display limited cardiomyogenic plasticity
-
Koninckx R, Hensen K, Daniels A et al. Human bone marrow stem cells co-cultured with neonatal rat cardiomyocytes display limited cardiomyogenic plasticity. Cytotherapy 2009;11:778-792.
-
(2009)
Cytotherapy
, vol.11
, pp. 778-792
-
-
Koninckx, R.1
Hensen, K.2
Daniels, A.3
-
4
-
-
56249148884
-
Bone marrow-derived mesenchymal stromal cells express cardiac-specific markers, retain the stromal phenotype, and do not become functional cardiomyocytes in vitro
-
Rose RA, Jiang H, Wang X et al. Bone marrow-derived mesenchymal stromal cells express cardiac-specific markers, retain the stromal phenotype, and do not become functional cardiomyocytes in vitro. Stem Cells 2008;26:2884-2892.
-
(2008)
Stem Cells
, vol.26
, pp. 2884-2892
-
-
Rose, R.A.1
Jiang, H.2
Wang, X.3
-
5
-
-
32044434710
-
Cardiomyogenic potential of mesenchymal progenitors derived from human circulating CD14+ monocytes
-
Kodama H, Inoue T, Watanabe R et al. Cardiomyogenic potential of mesenchymal progenitors derived from human circulating CD14+ monocytes. Stem Cells Dev 2005;14:676-686.
-
(2005)
Stem Cells Dev
, vol.14
, pp. 676-686
-
-
Kodama, H.1
Inoue, T.2
Watanabe, R.3
-
6
-
-
34547880036
-
The significant cardiomyogenic potential of human umbilical cord blood-derived mesenchymal stem cells in vitro
-
Nishiyama N, Miyoshi S, Hida N et al. The significant cardiomyogenic potential of human umbilical cord blood-derived mesenchymal stem cells in vitro. Stem Cells 2007;25:2017-2024.
-
(2007)
Stem Cells
, vol.25
, pp. 2017-2024
-
-
Nishiyama, N.1
Miyoshi, S.2
Hida, N.3
-
7
-
-
80051983744
-
Treatment of human mesenchymal stem cells with angiotensin receptor blocker improved efficiency of cardiomyogenic transdifferentiation and improved cardiac function via angiogenesis
-
Numasawa Y, Kimura T, Miyoshi S et al. Treatment of human mesenchymal stem cells with angiotensin receptor blocker improved efficiency of cardiomyogenic transdifferentiation and improved cardiac function via angiogenesis. Stem Cells 2011;29:1405-1414.
-
(2011)
Stem Cells
, vol.29
, pp. 1405-1414
-
-
Numasawa, Y.1
Kimura, T.2
Miyoshi, S.3
-
8
-
-
41749088485
-
Functional properties of cells obtained from human cord blood CD34+ stem cells and mouse cardiac myocytes in coculture
-
Orlandi A, Pagani F, Avitabile D et al. Functional properties of cells obtained from human cord blood CD34+ stem cells and mouse cardiac myocytes in coculture. Am J Physiol Heart Circ Physiol 2008;294:H1541-H1549.
-
(2008)
Am J Physiol Heart Circ Physiol
, vol.294
-
-
Orlandi, A.1
Pagani, F.2
Avitabile, D.3
-
9
-
-
48849114571
-
Forced alignment of mesenchymal stem cells undergoing cardiomyogenic differentiation affects functional integration with cardiomyocyte cultures
-
Pijnappels DA, Schalij MJ, Ramkisoensing AA et al. Forced alignment of mesenchymal stem cells undergoing cardiomyogenic differentiation affects functional integration with cardiomyocyte cultures. Circ Res 2008;103:167-176.
-
(2008)
Circ Res
, vol.103
, pp. 167-176
-
-
Pijnappels, D.A.1
Schalij, M.J.2
Ramkisoensing, A.A.3
-
10
-
-
79952129848
-
Pretreatment of human mesenchymal stem cells with pioglitazone improved efficiency of cardiomyogenic transdifferentiation and cardiac function
-
Shinmura D, Togashi I, Miyoshi S et al. Pretreatment of human mesenchymal stem cells with pioglitazone improved efficiency of cardiomyogenic transdifferentiation and cardiac function. Stem Cells 2011;29:357-366.
-
(2011)
Stem Cells
, vol.29
, pp. 357-366
-
-
Shinmura, D.1
Togashi, I.2
Miyoshi, S.3
-
11
-
-
77952999205
-
Xenografted human amniotic membrane-derived mesenchymal stem cells are immunologically tolerated and transdifferentiated into cardiomyocytes
-
Tsuji H, Miyoshi S, Ikegami Y et al. Xenografted human amniotic membrane-derived mesenchymal stem cells are immunologically tolerated and transdifferentiated into cardiomyocytes. Circ Res 2010;106:1613-1623.
-
(2010)
Circ Res
, vol.106
, pp. 1613-1623
-
-
Tsuji, H.1
Miyoshi, S.2
Ikegami, Y.3
-
12
-
-
33846103848
-
Prolonged adherence of human immunodeficiency virus-derived vector particles to hematopoietic target cells leads to secondary transduction in vitro and in vivo
-
Pan YW, Scarlett JM, Luoh TT et al. Prolonged adherence of human immunodeficiency virus-derived vector particles to hematopoietic target cells leads to secondary transduction in vitro and in vivo. J Virol 2007;81:639-649.
-
(2007)
J Virol
, vol.81
, pp. 639-649
-
-
Pan, Y.W.1
Scarlett, J.M.2
Luoh, T.T.3
-
13
-
-
0019414964
-
Neutralization of vesicular stomatitis virus (VSV) by human complement requires a natural IgM antibody present in human serum
-
Beebe DP, Cooper NR. Neutralization of vesicular stomatitis virus (VSV) by human complement requires a natural IgM antibody present in human serum. J Immunol 1981;126:1562-1568.
-
(1981)
J Immunol
, vol.126
, pp. 1562-1568
-
-
Beebe, D.P.1
Cooper, N.R.2
-
14
-
-
0344683235
-
-
National Institutes of Health 8th ed. National Academies Press
-
National Institutes of Health. Guide for the Care and Use of Laboratory Animals, 8th ed. National Academies Press, 2011.
-
(2011)
Guide for the Care and Use of Laboratory Animals
-
-
-
15
-
-
0036116344
-
Lentiviral vectors for efficient transduction of isolated primary quiescent hepatocytes
-
Seppen J, Rijnberg M, Cooreman MP et al. Lentiviral vectors for efficient transduction of isolated primary quiescent hepatocytes. J Hepatol 2002;36:459-465.
-
(2002)
J Hepatol
, vol.36
, pp. 459-465
-
-
Seppen, J.1
Rijnberg, M.2
Cooreman, M.P.3
-
16
-
-
35248868915
-
Fibroblasts from human postmyocardial infarction scars acquire properties of cardiomyocytes after transduction with a recombinant myocardin gene
-
van Tuyn J, Pijnappels DA, de Vries AA et al. Fibroblasts from human postmyocardial infarction scars acquire properties of cardiomyocytes after transduction with a recombinant myocardin gene. FASEB J 2007;21:3369-3379.
-
(2007)
FASEB J
, vol.21
, pp. 3369-3379
-
-
Van Tuyn, J.1
Pijnappels, D.A.2
De Vries, A.A.3
-
17
-
-
80052568670
-
Human embryonic and fetal mesenchymal stem cells differentiate toward three different cardiac lineages in contrast to their adult counterparts
-
Ramkisoensing AA, Pijnappels DA, Askar SF et al. Human embryonic and fetal mesenchymal stem cells differentiate toward three different cardiac lineages in contrast to their adult counterparts. PLoS One 2011;6:e24164.
-
(2011)
PLoS One
, vol.6
-
-
Ramkisoensing, A.A.1
Pijnappels, D.A.2
Askar, S.F.3
-
18
-
-
84861846361
-
Gap junctional coupling with cardiomyocytes is necessary but not sufficient for cardiomyogenic differentiation of cocultured human mesenchymal stem cells
-
Ramkisoensing AA, Pijnappels DA, Swildens J et al. Gap junctional coupling with cardiomyocytes is necessary but not sufficient for cardiomyogenic differentiation of cocultured human mesenchymal stem cells. Stem Cells 2012;30:1236-1245.
-
(2012)
Stem Cells
, vol.30
, pp. 1236-1245
-
-
Ramkisoensing, A.A.1
Pijnappels, D.A.2
Swildens, J.3
-
19
-
-
84857591879
-
Connexin43 silencing in myofibroblasts prevents arrhythmias in myocardial cultures: Role of maximal diastolic potential
-
Askar SF, Bingen BO, Swildens J et al. Connexin43 silencing in myofibroblasts prevents arrhythmias in myocardial cultures: Role of maximal diastolic potential. Cardiovasc Res 2012;93:434-444.
-
(2012)
Cardiovasc Res
, vol.93
, pp. 434-444
-
-
Askar, S.F.1
Bingen, B.O.2
Swildens, J.3
-
20
-
-
38849183374
-
Horizontal gene transfer from human endothelial cells to rat cardiomyocytes after intracoronary transplantation
-
Burghoff S, Ding Z, Godecke S et al. Horizontal gene transfer from human endothelial cells to rat cardiomyocytes after intracoronary transplantation. Cardiovasc Res 2008;77:534-543.
-
(2008)
Cardiovasc Res
, vol.77
, pp. 534-543
-
-
Burghoff, S.1
Ding, Z.2
Godecke, S.3
|