메뉴 건너뛰기




Volumn 115, Issue , 2012, Pages 210-217

Effects of meteorological forcing on coastal eutrophication: Modeling with model trees

Author keywords

Dynamics; Eutrophication; Linear regression; Machine learning algorithm; Model tree; Process based modeling

Indexed keywords

COASTAL ZONE MANAGEMENT; DATA SET; ECOLOGICAL MODELING; ENVIRONMENTAL CONDITIONS; EUTROPHICATION; HOMOGENEITY; METEOROLOGY; POLICY MAKING; PREDICTION; PRIMARY PRODUCTION; RUNOFF;

EID: 84870321613     PISSN: 02727714     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ecss.2012.09.003     Document Type: Article
Times cited : (14)

References (89)
  • 1
    • 84855893978 scopus 로고    scopus 로고
    • Development of stage-discharge rating curve using model tree and neural networks: an application to Peachtree Creek in Atlanta
    • Ajmera T.K., Goyal M.K. Development of stage-discharge rating curve using model tree and neural networks: an application to Peachtree Creek in Atlanta. Expert Systems with Applications 2012, 39:5702-5710.
    • (2012) Expert Systems with Applications , vol.39 , pp. 5702-5710
    • Ajmera, T.K.1    Goyal, M.K.2
  • 2
    • 36049048038 scopus 로고    scopus 로고
    • Error quantification of a high resolution coupled hydrodynamic-ecosystem coastal-ocean model: Part 2. Chlorophyll-a, nutrients and SPM
    • Allen J.I., Holt J.T., Blackford J., Proctor R. Error quantification of a high resolution coupled hydrodynamic-ecosystem coastal-ocean model: Part 2. Chlorophyll-a, nutrients and SPM. Journal of Marine Systems 2007, 68:381-404.
    • (2007) Journal of Marine Systems , vol.68 , pp. 381-404
    • Allen, J.I.1    Holt, J.T.2    Blackford, J.3    Proctor, R.4
  • 3
    • 0042766843 scopus 로고    scopus 로고
    • Analysis of phytoplankton community structure using similarity indices: a new methodology for discriminating among eutrophication levels in coastal marine ecosystems
    • Arhonditsis G., Karydis M., Tsirtsis G. Analysis of phytoplankton community structure using similarity indices: a new methodology for discriminating among eutrophication levels in coastal marine ecosystems. Environmental Management 2003, 31:619-632.
    • (2003) Environmental Management , vol.31 , pp. 619-632
    • Arhonditsis, G.1    Karydis, M.2    Tsirtsis, G.3
  • 4
    • 78650537896 scopus 로고    scopus 로고
    • Evolutionary model trees for handling continuous classes in machine learning
    • Barros R.C., Duncan D.R., Basgalupp M.P. Evolutionary model trees for handling continuous classes in machine learning. Information Sciences 2011, 181(5):954-971.
    • (2011) Information Sciences , vol.181 , Issue.5 , pp. 954-971
    • Barros, R.C.1    Duncan, D.R.2    Basgalupp, M.P.3
  • 5
    • 0034564603 scopus 로고    scopus 로고
    • Artificial neural networks: fundamentals, computing, design, and application
    • Basheer I.A., Hajmeer M. Artificial neural networks: fundamentals, computing, design, and application. Journal of Microbiological Methods 2000, 43:3-31.
    • (2000) Journal of Microbiological Methods , vol.43 , pp. 3-31
    • Basheer, I.A.1    Hajmeer, M.2
  • 6
    • 15244357042 scopus 로고    scopus 로고
    • Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean
    • Beman J.M., Arrigo K.R., Matson P.A. Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean. Nature 2005, 434:211-214.
    • (2005) Nature , vol.434 , pp. 211-214
    • Beman, J.M.1    Arrigo, K.R.2    Matson, P.A.3
  • 7
    • 12144264770 scopus 로고    scopus 로고
    • Neural networks and M5 model trees in modelling water level discharge relationship
    • Bhattacharya B., Solomatine D.P. Neural networks and M5 model trees in modelling water level discharge relationship. Neurocomputing 2005, 63:381-396.
    • (2005) Neurocomputing , vol.63 , pp. 381-396
    • Bhattacharya, B.1    Solomatine, D.P.2
  • 8
    • 78651474018 scopus 로고    scopus 로고
    • Predicting wave run-up on rubble-mound structures using M5 model tree
    • Bonakdar L., Etemad-Shahidi A. Predicting wave run-up on rubble-mound structures using M5 model tree. Ocean Engineering 2011, 38:111-118.
    • (2011) Ocean Engineering , vol.38 , pp. 111-118
    • Bonakdar, L.1    Etemad-Shahidi, A.2
  • 9
    • 1542548177 scopus 로고    scopus 로고
    • A Bayesian network of eutrophication models for synthesis, prediction, and uncertainty analysis
    • Borsuk M.E., Stow C.A., Reckhow K.H. A Bayesian network of eutrophication models for synthesis, prediction, and uncertainty analysis. Ecological Modelling 2004, 173:219-239.
    • (2004) Ecological Modelling , vol.173 , pp. 219-239
    • Borsuk, M.E.1    Stow, C.A.2    Reckhow, K.H.3
  • 10
    • 8844227567 scopus 로고    scopus 로고
    • Use of principal component scores in multiple linear regression models for prediction of Chlorophyll-a in reservoirs
    • Camdevyren H., Demyr N., Kanik A., Keskyn S. Use of principal component scores in multiple linear regression models for prediction of Chlorophyll-a in reservoirs. Ecological Modelling 2005, 181:581-589.
    • (2005) Ecological Modelling , vol.181 , pp. 581-589
    • Camdevyren, H.1    Demyr, N.2    Kanik, A.3    Keskyn, S.4
  • 12
    • 61649121876 scopus 로고    scopus 로고
    • Determination of the optimal parameters in regression models for the prediction of chlorophyll-a: a case study of the Yeongsan Reservoir, Korea
    • Cho K.H., Kang J.H., Ki S.J., Park Y., Cha S.M., Kim J.H. Determination of the optimal parameters in regression models for the prediction of chlorophyll-a: a case study of the Yeongsan Reservoir, Korea. Science of the Total Environment 2009, 407:2536-2545.
    • (2009) Science of the Total Environment , vol.407 , pp. 2536-2545
    • Cho, K.H.1    Kang, J.H.2    Ki, S.J.3    Park, Y.4    Cha, S.M.5    Kim, J.H.6
  • 14
    • 84862253560 scopus 로고    scopus 로고
    • A review of supervised machine learning algorithms and their applications to ecological data
    • Crisci C., Ghattas B., Perera G. A review of supervised machine learning algorithms and their applications to ecological data. Ecological Modelling 2012, 240:113-122.
    • (2012) Ecological Modelling , vol.240 , pp. 113-122
    • Crisci, C.1    Ghattas, B.2    Perera, G.3
  • 15
    • 34447624000 scopus 로고    scopus 로고
    • Hierarchical classification of environmental factors and agricultural practices affecting soil fauna under cropping systems using Bt maize
    • Debeljak M., Cortet J., Demsar D., Krogh P.H., Dzeroski S. Hierarchical classification of environmental factors and agricultural practices affecting soil fauna under cropping systems using Bt maize. Pedobiologia 2007, 51:229-238.
    • (2007) Pedobiologia , vol.51 , pp. 229-238
    • Debeljak, M.1    Cortet, J.2    Demsar, D.3    Krogh, P.H.4    Dzeroski, S.5
  • 17
    • 0035673377 scopus 로고    scopus 로고
    • Applications of symbolic machine learning to ecological modelling
    • Dzeroski S. Applications of symbolic machine learning to ecological modelling. Ecological Modelling 2001, 146:263-273.
    • (2001) Ecological Modelling , vol.146 , pp. 263-273
    • Dzeroski, S.1
  • 18
    • 0348197097 scopus 로고    scopus 로고
    • Using regression trees to identify the habitat preference of the sea cucumber (Holothuria leucospilota) on Rarotonga, Cook Islands
    • Dzeroski S., Drumm D. Using regression trees to identify the habitat preference of the sea cucumber (Holothuria leucospilota) on Rarotonga, Cook Islands. Ecological Modelling 2003, 170:219-226.
    • (2003) Ecological Modelling , vol.170 , pp. 219-226
    • Dzeroski, S.1    Drumm, D.2
  • 19
    • 71549124103 scopus 로고    scopus 로고
    • Comparison between M52 model tree and neural networks for prediction of significant wave height in Lake Superior
    • Etemad-Shahidi A., Mahjoobi J. Comparison between M52 model tree and neural networks for prediction of significant wave height in Lake Superior. Ocean Engineering 2009, 36:1175-1181.
    • (2009) Ocean Engineering , vol.36 , pp. 1175-1181
    • Etemad-Shahidi, A.1    Mahjoobi, J.2
  • 22
    • 58849135751 scopus 로고    scopus 로고
    • Nutrient criteria for lakes, ponds, and reservoirs: a Bayesian TREED model approach
    • Freeman A.M., Lamon E.C., Stow C.A. Nutrient criteria for lakes, ponds, and reservoirs: a Bayesian TREED model approach. Ecological Modelling 2009, 220:630-639.
    • (2009) Ecological Modelling , vol.220 , pp. 630-639
    • Freeman, A.M.1    Lamon, E.C.2    Stow, C.A.3
  • 23
    • 0037442845 scopus 로고    scopus 로고
    • Review and comparison of methods to study the contribution of variables in artificial neural network models
    • Gevrey M., Dimopoulos I., Lek S. Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecological Modelling 2003, 160:249-264.
    • (2003) Ecological Modelling , vol.160 , pp. 249-264
    • Gevrey, M.1    Dimopoulos, I.2    Lek, S.3
  • 24
    • 78650923209 scopus 로고    scopus 로고
    • Neural network estimation of chlorophyll a from MERIS full resolution data for the coastal waters of Galician rias (NW Spain)
    • Gonzalez Vilas L., Spyrakos E., Torres Palenzuela J.M. Neural network estimation of chlorophyll a from MERIS full resolution data for the coastal waters of Galician rias (NW Spain). Remote Sensing of Environment 2011, 115:524-535.
    • (2011) Remote Sensing of Environment , vol.115 , pp. 524-535
    • Gonzalez Vilas, L.1    Spyrakos, E.2    Torres Palenzuela, J.M.3
  • 25
    • 0033835189 scopus 로고    scopus 로고
    • Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: is there a common relationship?
    • Guildford S.J., Hecky R.E. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: is there a common relationship?. Limnology and Oceanography 2000, 45:1213-1223.
    • (2000) Limnology and Oceanography , vol.45 , pp. 1213-1223
    • Guildford, S.J.1    Hecky, R.E.2
  • 26
    • 40649085148 scopus 로고    scopus 로고
    • Estimating fish community diversity from environmental features in the Tagus estuary (Portugal): multiple linear regression and artificial neural network approaches
    • Gutierrez-Estrada J.C., Vasconcelos R., Costa M.J. Estimating fish community diversity from environmental features in the Tagus estuary (Portugal): multiple linear regression and artificial neural network approaches. Journal of Applied Ichthyology 2008, 24:150-162.
    • (2008) Journal of Applied Ichthyology , vol.24 , pp. 150-162
    • Gutierrez-Estrada, J.C.1    Vasconcelos, R.2    Costa, M.J.3
  • 28
    • 0036027497 scopus 로고    scopus 로고
    • Neural network modeling of salinity variation in Apalachicola River
    • Huang W., Foo S. Neural network modeling of salinity variation in Apalachicola River. Water Research 2002, 36:356-362.
    • (2002) Water Research , vol.36 , pp. 356-362
    • Huang, W.1    Foo, S.2
  • 29
    • 78649956822 scopus 로고    scopus 로고
    • Real time wave forecasting using wind time history and numerical model
    • Jain P., Deo M.C., Latha G., Rajendran V. Real time wave forecasting using wind time history and numerical model. Ocean Modelling 2011, 36:26-39.
    • (2011) Ocean Modelling , vol.36 , pp. 26-39
    • Jain, P.1    Deo, M.C.2    Latha, G.3    Rajendran, V.4
  • 30
    • 33751009634 scopus 로고    scopus 로고
    • River phytoplankton prediction model by Artificial Neural Network: model performance and selection of input variables to predict time-series phytoplankton proliferations in a regulated river system
    • Jeong K.S., Kim D.K., Joo G.J. River phytoplankton prediction model by Artificial Neural Network: model performance and selection of input variables to predict time-series phytoplankton proliferations in a regulated river system. Ecological Informatics 2006, 1:235-245.
    • (2006) Ecological Informatics , vol.1 , pp. 235-245
    • Jeong, K.S.1    Kim, D.K.2    Joo, G.J.3
  • 31
    • 38349159579 scopus 로고    scopus 로고
    • Non-linear autoregressive modelling by Temporal Recurrent Neural Networks for the prediction of freshwater phytoplankton dynamics
    • Jeong K.S., Kim D.K., Jung J.M., Kim M.C., Joo G.J. Non-linear autoregressive modelling by Temporal Recurrent Neural Networks for the prediction of freshwater phytoplankton dynamics. Ecological Modelling 2008, 211:292-300.
    • (2008) Ecological Modelling , vol.211 , pp. 292-300
    • Jeong, K.S.1    Kim, D.K.2    Jung, J.M.3    Kim, M.C.4    Joo, G.J.5
  • 32
    • 33644664836 scopus 로고    scopus 로고
    • Spruce bark beetles (Ips typographus, Pityogenes chalcographus, Col.: Scolytidae) in the Dinaric mountain forests of Slovenia: monitoring and modeling
    • Jurc M., Perko M., Dzeroski S., Demaar D., Hraaovec B. Spruce bark beetles (Ips typographus, Pityogenes chalcographus, Col.: Scolytidae) in the Dinaric mountain forests of Slovenia: monitoring and modeling. Ecological Modelling 2006, 194:219-226.
    • (2006) Ecological Modelling , vol.194 , pp. 219-226
    • Jurc, M.1    Perko, M.2    Dzeroski, S.3    Demaar, D.4    Hraaovec, B.5
  • 34
    • 0029659723 scopus 로고    scopus 로고
    • Quantitative assessment of eutrophication: a scoring system for characterising water quality in coastal marine ecosystems
    • Karydis M. Quantitative assessment of eutrophication: a scoring system for characterising water quality in coastal marine ecosystems. Environmental Monitoring and Assessment 1996, 41:233-246.
    • (1996) Environmental Monitoring and Assessment , vol.41 , pp. 233-246
    • Karydis, M.1
  • 35
    • 0030458125 scopus 로고    scopus 로고
    • Ecological indices: a biometric approach for assessing eutrophication levels in the marine environment
    • Karydis M., Tsirtsis G. Ecological indices: a biometric approach for assessing eutrophication levels in the marine environment. Science of the Total Environment 1996, 186:209-219.
    • (1996) Science of the Total Environment , vol.186 , pp. 209-219
    • Karydis, M.1    Tsirtsis, G.2
  • 36
    • 0344326232 scopus 로고    scopus 로고
    • A neural network model for estimating sea surface chlorophyll and sediments from thematic Mapper imagery
    • Keiner L.E., Yan X.H. A neural network model for estimating sea surface chlorophyll and sediments from thematic Mapper imagery. Remote Sensing of Environment 1998, 66:153-165.
    • (1998) Remote Sensing of Environment , vol.66 , pp. 153-165
    • Keiner, L.E.1    Yan, X.H.2
  • 37
    • 79952901999 scopus 로고    scopus 로고
    • Coastal marine eutrophication assessment: a review on data analysis
    • Kitsiou D., Karydis M. Coastal marine eutrophication assessment: a review on data analysis. Environment International 2011, 37:778-801.
    • (2011) Environment International , vol.37 , pp. 778-801
    • Kitsiou, D.1    Karydis, M.2
  • 38
    • 62249107327 scopus 로고    scopus 로고
    • Using single- and multi-target regression trees and ensembles to model a compound index of vegetation condition
    • Kocev D., Dzeroski S., White M.D., Newell G.R., Griffioen P. Using single- and multi-target regression trees and ensembles to model a compound index of vegetation condition. Ecological Modelling 2009, 220:1159-1168.
    • (2009) Ecological Modelling , vol.220 , pp. 1159-1168
    • Kocev, D.1    Dzeroski, S.2    White, M.D.3    Newell, G.R.4    Griffioen, P.5
  • 40
    • 0028554214 scopus 로고
    • Using machine learning techniques in the construction of models I. Introduction
    • Kompare B., Bratko I., Steinman F., Dzeroski S. Using machine learning techniques in the construction of models I. Introduction. Ecological Modelling 1994, 75-76:617-628.
    • (1994) Ecological Modelling , vol.75-76 , pp. 617-628
    • Kompare, B.1    Bratko, I.2    Steinman, F.3    Dzeroski, S.4
  • 41
    • 77955579006 scopus 로고    scopus 로고
    • Why is the Eastern Mediterranean phosphorus limited?
    • Krom M.D., Emeis K.C., Van Kappellen P. Why is the Eastern Mediterranean phosphorus limited?. Progress in Oceanography 2010, 85(3-4):236-244.
    • (2010) Progress in Oceanography , vol.85 , Issue.3-4 , pp. 236-244
    • Krom, M.D.1    Emeis, K.C.2    Van Kappellen, P.3
  • 42
    • 37849186107 scopus 로고    scopus 로고
    • Using artificial neural network for reservoir eutrophication prediction
    • Kuo J.T., Hsieh M.H., Lung W.S., She N. Using artificial neural network for reservoir eutrophication prediction. Ecological Modelling 2007, 200:171-177.
    • (2007) Ecological Modelling , vol.200 , pp. 171-177
    • Kuo, J.T.1    Hsieh, M.H.2    Lung, W.S.3    She, N.4
  • 43
    • 40849105038 scopus 로고    scopus 로고
    • Lake classification to enhance prediction of eutrophication endpoints in Finnish lakes
    • Lamon E.C., Malve O., Pietilainen O.P. Lake classification to enhance prediction of eutrophication endpoints in Finnish lakes. Environmental Modelling & Software 2008, 23:938-947.
    • (2008) Environmental Modelling & Software , vol.23 , pp. 938-947
    • Lamon, E.C.1    Malve, O.2    Pietilainen, O.P.3
  • 45
    • 0344604541 scopus 로고    scopus 로고
    • Artificial neural networks as a tool in ecological modelling, an introduction
    • Lek S., Guegan J.F. Artificial neural networks as a tool in ecological modelling, an introduction. Ecological Modelling 1999, 120:65-73.
    • (1999) Ecological Modelling , vol.120 , pp. 65-73
    • Lek, S.1    Guegan, J.F.2
  • 46
    • 64249086819 scopus 로고    scopus 로고
    • Validation of a hydrodynamic-ecosystem model simulation with time-series data collected in the western English Channel
    • Lewis K., Allen J.I. Validation of a hydrodynamic-ecosystem model simulation with time-series data collected in the western English Channel. Journal of Marine Systems 2009, 77:296-311.
    • (2009) Journal of Marine Systems , vol.77 , pp. 296-311
    • Lewis, K.1    Allen, J.I.2
  • 47
    • 73949109319 scopus 로고    scopus 로고
    • Exploring the influence of lake water chemistry on chlorophyll a: a multivariate statistical model analysis
    • Liu Y., Guo H., Yang P. Exploring the influence of lake water chemistry on chlorophyll a: a multivariate statistical model analysis. Ecological Modelling 2010, 221:681-688.
    • (2010) Ecological Modelling , vol.221 , pp. 681-688
    • Liu, Y.1    Guo, H.2    Yang, P.3
  • 48
    • 2642570244 scopus 로고    scopus 로고
    • Fuzzy prediction of the algal blooms in the Orbetello lagoon
    • Marsili-Libelli S. Fuzzy prediction of the algal blooms in the Orbetello lagoon. Environmental Modelling & Software 2004, 19:799-808.
    • (2004) Environmental Modelling & Software , vol.19 , pp. 799-808
    • Marsili-Libelli, S.1
  • 49
    • 27744586803 scopus 로고    scopus 로고
    • Genetic programming for analysis and real-time prediction of coastal algal blooms
    • Muttil N., Lee J.H.W. Genetic programming for analysis and real-time prediction of coastal algal blooms. Ecological Modelling 2005, 189:363-376.
    • (2005) Ecological Modelling , vol.189 , pp. 363-376
    • Muttil, N.1    Lee, J.H.W.2
  • 50
    • 79951777979 scopus 로고    scopus 로고
    • Classifying diatoms into trophic state index classes with novel classification algorithm
    • Naumoski A., Mitreski K. Classifying diatoms into trophic state index classes with novel classification algorithm. Procedia Environmental Sciences 2010, 2:1124-1138.
    • (2010) Procedia Environmental Sciences , vol.2 , pp. 1124-1138
    • Naumoski, A.1    Mitreski, K.2
  • 51
    • 70549098351 scopus 로고    scopus 로고
    • Sanitary felling of Norway spruce due to spruce bark beetles in Slovenia: a model and projections for various climate change scenarios
    • Ogris N., Jurc M. Sanitary felling of Norway spruce due to spruce bark beetles in Slovenia: a model and projections for various climate change scenarios. Ecological Modelling 2010, 221:290-302.
    • (2010) Ecological Modelling , vol.221 , pp. 290-302
    • Ogris, N.1    Jurc, M.2
  • 53
    • 35748930255 scopus 로고    scopus 로고
    • Correlations between several environmental factors affecting the bloom events of cyanobacteria in Liptovska Mara reservoir (Slovakia) - a simple regression model
    • Onderka M. Correlations between several environmental factors affecting the bloom events of cyanobacteria in Liptovska Mara reservoir (Slovakia) - a simple regression model. Ecological Modelling 2007, 209:412-416.
    • (2007) Ecological Modelling , vol.209 , pp. 412-416
    • Onderka, M.1
  • 54
    • 78049281871 scopus 로고    scopus 로고
    • Supervised machine learning and heterotic classification of maize (Zea mays L.) using molecular marker data
    • Ornella L., Tapia E. Supervised machine learning and heterotic classification of maize (Zea mays L.) using molecular marker data. Computers and Electronics in Agriculture 2010, 74:250-257.
    • (2010) Computers and Electronics in Agriculture , vol.74 , pp. 250-257
    • Ornella, L.1    Tapia, E.2
  • 55
    • 0026927426 scopus 로고
    • Multilayer perceptron, fuzzy sets, and classification
    • Pal S.K., Mitra S. Multilayer perceptron, fuzzy sets, and classification. IEEE Transactions on Neural Networks 1992, 3(5):683-697.
    • (1992) IEEE Transactions on Neural Networks , vol.3 , Issue.5 , pp. 683-697
    • Pal, S.K.1    Mitra, S.2
  • 57
    • 65549160093 scopus 로고    scopus 로고
    • Fuzzy modelling of chlorophyll production in a Brazilian upwelling system
    • Pereira G.C., Evsukoff A., Ebecken N.F.F. Fuzzy modelling of chlorophyll production in a Brazilian upwelling system. Ecological Modelling 2009, 220:1506-1512.
    • (2009) Ecological Modelling , vol.220 , pp. 1506-1512
    • Pereira, G.C.1    Evsukoff, A.2    Ebecken, N.F.F.3
  • 58
    • 70449098936 scopus 로고    scopus 로고
    • Principal component analysis: development of a multivariate index for assessing eutrophication according to the European water framework directive
    • Primpas I., Tsirtsis G., Karydis M., Kokkoris G.D. Principal component analysis: development of a multivariate index for assessing eutrophication according to the European water framework directive. Ecological Indicators 2010, 10:178-183.
    • (2010) Ecological Indicators , vol.10 , pp. 178-183
    • Primpas, I.1    Tsirtsis, G.2    Karydis, M.3    Kokkoris, G.D.4
  • 60
    • 0002899794 scopus 로고    scopus 로고
    • Learning decision tree classifiers
    • Quinlan J.R. Learning decision tree classifiers. ACM Computing Surveys 1996, 28:71-72.
    • (1996) ACM Computing Surveys , vol.28 , pp. 71-72
    • Quinlan, J.R.1
  • 63
    • 78650538240 scopus 로고    scopus 로고
    • Integration of numerical modeling and Bayesian analysis for setting water quality criteria in Hamilton Harbour, Ontario, Canada
    • Ramin M., Stremilov S., Labencki T., Gudimov A., Boyd D., Arhonditsis G.B. Integration of numerical modeling and Bayesian analysis for setting water quality criteria in Hamilton Harbour, Ontario, Canada. Environmental Modelling & Software 2011, 26:337-353.
    • (2011) Environmental Modelling & Software , vol.26 , pp. 337-353
    • Ramin, M.1    Stremilov, S.2    Labencki, T.3    Gudimov, A.4    Boyd, D.5    Arhonditsis, G.B.6
  • 64
    • 0026120032 scopus 로고
    • Small sample size effects in statistical pattern recognition: recommendations for practitioners
    • Raudys S.J., Jain A.K. Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Transactions on Pattern Analysis and Machine Intelligence 1991, 13(3):252-264.
    • (1991) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.13 , Issue.3 , pp. 252-264
    • Raudys, S.J.1    Jain, A.K.2
  • 65
    • 75049085205 scopus 로고    scopus 로고
    • Nutrient bioaccumulation in Phragmites australis: management tool for reduction of pollution in the Mar Menor
    • Ruiz M., Velasco J. Nutrient bioaccumulation in Phragmites australis: management tool for reduction of pollution in the Mar Menor. Water Air and Soil Pollution 2010, 205:173-185.
    • (2010) Water Air and Soil Pollution , vol.205 , pp. 173-185
    • Ruiz, M.1    Velasco, J.2
  • 66
    • 67349102570 scopus 로고    scopus 로고
    • Chapter 19: neural network applications in coastal ecological modeling
    • Elsevier Oceanography Series, V.C. Lakhan (Ed.)
    • Scardi M. Chapter 19: neural network applications in coastal ecological modeling. Advances in Coastal Modeling 2003, 505-532. Elsevier Oceanography Series. V.C. Lakhan (Ed.).
    • (2003) Advances in Coastal Modeling , pp. 505-532
    • Scardi, M.1
  • 67
    • 34247525989 scopus 로고    scopus 로고
    • Investigation of an artificial intelligence technology Model trees Novel applications for an immediate release tablet formulation database
    • Shao Q., Rowe R.C., York P. Investigation of an artificial intelligence technology Model trees Novel applications for an immediate release tablet formulation database. European Journal of Pharmaceutical Sciences 2007, 31:137-144.
    • (2007) European Journal of Pharmaceutical Sciences , vol.31 , pp. 137-144
    • Shao, Q.1    Rowe, R.C.2    York, P.3
  • 68
    • 77955055812 scopus 로고    scopus 로고
    • Estimation of mean annual flood in Indian Catchments using backpropagation neural network and M5 model tree
    • Singh K.K., Pal M., Singh V.P. Estimation of mean annual flood in Indian Catchments using backpropagation neural network and M5 model tree. Water Resources Management 2010, 24:2007-2019.
    • (2010) Water Resources Management , vol.24 , pp. 2007-2019
    • Singh, K.K.1    Pal, M.2    Singh, V.P.3
  • 70
    • 67349271162 scopus 로고    scopus 로고
    • Dynamics of potentially harmful microalgae in a confined Mediterranean Gulf-Assessing the risk of bloom formation
    • Spatharis S., Dolapsakis N.P., Economou-Amilli A., Tsirtsis G., Danielidis D.B. Dynamics of potentially harmful microalgae in a confined Mediterranean Gulf-Assessing the risk of bloom formation. Harmful Algae 2009, 8:736-743.
    • (2009) Harmful Algae , vol.8 , pp. 736-743
    • Spatharis, S.1    Dolapsakis, N.P.2    Economou-Amilli, A.3    Tsirtsis, G.4    Danielidis, D.B.5
  • 71
    • 33645974258 scopus 로고    scopus 로고
    • Modular learning models in forecasting natural phenomena
    • Solomatine D.P., Siek M.B. Modular learning models in forecasting natural phenomena. Neural Networks 2006, 19:215-224.
    • (2006) Neural Networks , vol.19 , pp. 215-224
    • Solomatine, D.P.1    Siek, M.B.2
  • 72
    • 34249036436 scopus 로고    scopus 로고
    • Effects of pulsed nutrient inputs on phytoplankton assemblage structure and blooms in an enclosed coastal area
    • Spatharis S., Tsirtsis G., Danielidis D., Do Chi T., Mouillot D. Effects of pulsed nutrient inputs on phytoplankton assemblage structure and blooms in an enclosed coastal area. Estuarine Coastal and Shelf Science 2007, 73:807-815.
    • (2007) Estuarine Coastal and Shelf Science , vol.73 , pp. 807-815
    • Spatharis, S.1    Tsirtsis, G.2    Danielidis, D.3    Do Chi, T.4    Mouillot, D.5
  • 73
    • 35348826847 scopus 로고    scopus 로고
    • Recurrent Pseudo-nitzschia calliantha (Bacillariophyceae) and Alexandrium insuetum (Dinophyceae) winter blooms induced by agricultural runoff
    • Spatharis S., Danielidis D., Tsirtsis G. Recurrent Pseudo-nitzschia calliantha (Bacillariophyceae) and Alexandrium insuetum (Dinophyceae) winter blooms induced by agricultural runoff. Harmful Algae 2007, 6:811-822.
    • (2007) Harmful Algae , vol.6 , pp. 811-822
    • Spatharis, S.1    Danielidis, D.2    Tsirtsis, G.3
  • 75
    • 34247114174 scopus 로고    scopus 로고
    • Machine learning applied to quality management - a study in ship repair domain
    • Srdoc A., Bratko I., Sluga A. Machine learning applied to quality management - a study in ship repair domain. Computers in Industry 2007, 58:464-473.
    • (2007) Computers in Industry , vol.58 , pp. 464-473
    • Srdoc, A.1    Bratko, I.2    Sluga, A.3
  • 76
    • 0032076911 scopus 로고    scopus 로고
    • Modelling the population dynamics of red deer (Cervus elaphus L.) with regard to forest development
    • Stankovski V., Debeljak M., Bratko I., Adamic M. Modelling the population dynamics of red deer (Cervus elaphus L.) with regard to forest development. Ecological Modelling 1998, 108:145-153.
    • (1998) Ecological Modelling , vol.108 , pp. 145-153
    • Stankovski, V.1    Debeljak, M.2    Bratko, I.3    Adamic, M.4
  • 78
    • 80051800791 scopus 로고    scopus 로고
    • Importance of feature selection in decision-tree and artificial-neural-network ecological applications. Alburnus alburnus alborella: a practical example
    • Tirelli T., Pessani D. Importance of feature selection in decision-tree and artificial-neural-network ecological applications. Alburnus alburnus alborella: a practical example. Ecological Informatics 2011, 6:309-315.
    • (2011) Ecological Informatics , vol.6 , pp. 309-315
    • Tirelli, T.1    Pessani, D.2
  • 80
    • 84870346631 scopus 로고    scopus 로고
    • Thresholds of terrestrial nutrient loading for the development of eutrophication episodes in a coastal embayment in the Aegean Sea
    • Tsirtsis G., Spatharis S., Sampatakaki A., Spyropoulou A. Thresholds of terrestrial nutrient loading for the development of eutrophication episodes in a coastal embayment in the Aegean Sea. Transitional Water Bulletin 2008, 3:25-37.
    • (2008) Transitional Water Bulletin , vol.3 , pp. 25-37
    • Tsirtsis, G.1    Spatharis, S.2    Sampatakaki, A.3    Spyropoulou, A.4
  • 81
    • 79959342172 scopus 로고    scopus 로고
    • Descriptive and prediction models of phytoplankton in the northern Adriatic
    • Volf G., Atanasova N., Kompare B., Precali R., Ozanic N. Descriptive and prediction models of phytoplankton in the northern Adriatic. Ecological Modelling 2011, 222:2502-2511.
    • (2011) Ecological Modelling , vol.222 , pp. 2502-2511
    • Volf, G.1    Atanasova, N.2    Kompare, B.3    Precali, R.4    Ozanic, N.5
  • 83
    • 0001717058 scopus 로고    scopus 로고
    • Induction of model trees for predicting continuous classes
    • University of Economics Faculty of Informatics and Statistics, Prague, M. van Someren, G. Widmer (Eds.)
    • Wang Y., Witten I.H. Induction of model trees for predicting continuous classes. Proceedings of the Poster Papers of the European Conference on Machine Learning 1997, 128-137. University of Economics Faculty of Informatics and Statistics, Prague. M. van Someren, G. Widmer (Eds.).
    • (1997) Proceedings of the Poster Papers of the European Conference on Machine Learning , pp. 128-137
    • Wang, Y.1    Witten, I.H.2
  • 85
    • 62249166694 scopus 로고    scopus 로고
    • A vertically integrated eutrophication model and its application to a river-style reservoir - Fuchunjiang, China
    • Wu T., Luo L., Qin B., Cui G., Yu Z., Yao Z. A vertically integrated eutrophication model and its application to a river-style reservoir - Fuchunjiang, China. Journal of Environmental Sciences 2009, 21:319-327.
    • (2009) Journal of Environmental Sciences , vol.21 , pp. 319-327
    • Wu, T.1    Luo, L.2    Qin, B.3    Cui, G.4    Yu, Z.5    Yao, Z.6
  • 87
    • 0004252445 scopus 로고
    • Prentice-Hall International, London
    • Zar J.H. Biostatistical Analysis 1984, Prentice-Hall International, London, 718 pp.
    • (1984) Biostatistical Analysis , pp. 718
    • Zar, J.H.1
  • 88
    • 0442311258 scopus 로고    scopus 로고
    • Retrieval of oceanic chloropyll concentation using support vector machines
    • Zhan H., Shi P., Chen C. Retrieval of oceanic chloropyll concentation using support vector machines. IEEE Transactions on Geoscience and Remote Sensing 2003, 41(12):2947-2951.
    • (2003) IEEE Transactions on Geoscience and Remote Sensing , vol.41 , Issue.12 , pp. 2947-2951
    • Zhan, H.1    Shi, P.2    Chen, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.