메뉴 건너뛰기




Volumn 67, Issue C, 2003, Pages 505-532

Chapter 19 Neural network applications in coastal ecological modeling

Author keywords

[No Author keywords available]

Indexed keywords


EID: 67349102570     PISSN: 04229894     EISSN: None     Source Type: Book Series    
DOI: 10.1016/S0422-9894(03)80136-8     Document Type: Article
Times cited : (7)

References (63)
  • 1
    • 0034804080 scopus 로고    scopus 로고
    • Application of the Kohonen neural network in coastal water management: Methodological development for the assessment and prediction of water quality
    • Aguilera P.A., Garrido Frenich A., Torres J.A., Castro H., Martinez Vidal J.L., and Canton M. Application of the Kohonen neural network in coastal water management: Methodological development for the assessment and prediction of water quality. Water Research 35 17 (2001) 4053-4062
    • (2001) Water Research , vol.35 , Issue.17 , pp. 4053-4062
    • Aguilera, P.A.1    Garrido Frenich, A.2    Torres, J.A.3    Castro, H.4    Martinez Vidal, J.L.5    Canton, M.6
  • 2
    • 0033578420 scopus 로고    scopus 로고
    • Wedding connectionist and algorithmic modelling towards forecasting Caulerpa taxifolia development in the north-western Mediterranean sea
    • Aussem A., and Hill D. Wedding connectionist and algorithmic modelling towards forecasting Caulerpa taxifolia development in the north-western Mediterranean sea. Ecological Modelling 120 (1999) 225-236
    • (1999) Ecological Modelling , vol.120 , pp. 225-236
    • Aussem, A.1    Hill, D.2
  • 3
    • 0033991766 scopus 로고    scopus 로고
    • Neural-network metamodelling for the prediction of Caulerpa taxifolia development in the Mediterranean sea
    • Aussem A., and Hill D. Neural-network metamodelling for the prediction of Caulerpa taxifolia development in the Mediterranean sea. Neurocomputing 30 (2000) 71-78
    • (2000) Neurocomputing , vol.30 , pp. 71-78
    • Aussem, A.1    Hill, D.2
  • 4
    • 0030019369 scopus 로고    scopus 로고
    • Investigating microclimatic influences on ozone injury in clover (Trifolium subterraneum) using artificial neural networks
    • Balls G.R., Palmer Brown D., and Sanders G.E. Investigating microclimatic influences on ozone injury in clover (Trifolium subterraneum) using artificial neural networks. New Phytology 132 (1996) 271-280
    • (1996) New Phytology , vol.132 , pp. 271-280
    • Balls, G.R.1    Palmer Brown, D.2    Sanders, G.E.3
  • 5
    • 0030299144 scopus 로고    scopus 로고
    • Stochastic models that predict trouts popu-lation densities or biomass on macrohabitat scale
    • Baran P., Lek S., Delacoste M., and Belaud A. Stochastic models that predict trouts popu-lation densities or biomass on macrohabitat scale. Hydrobiologia 337 (1996) 1-9
    • (1996) Hydrobiologia , vol.337 , pp. 1-9
    • Baran, P.1    Lek, S.2    Delacoste, M.3    Belaud, A.4
  • 6
    • 0033578403 scopus 로고    scopus 로고
    • Modelling primary production in a coastal embayment affected by upwelling using dynamic ecosystem models and artificial neural networks
    • Barciela R.M., Garcia E., and Fernández E. Modelling primary production in a coastal embayment affected by upwelling using dynamic ecosystem models and artificial neural networks. Ecological Modelling 120 (1999) 199-211.
    • (1999) Ecological Modelling , vol.120
    • Barciela, R.M.1    Garcia, E.2    Fernández, E.3
  • 7
    • 0030864590 scopus 로고    scopus 로고
    • Photosynthetic rates derived from satellite-based chlorophyll concentration
    • Behrenfeld M.J., and Falkowski P.G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnology and Oceanography 42 1 (1997) 1-20
    • (1997) Limnology and Oceanography , vol.42 , Issue.1 , pp. 1-20
    • Behrenfeld, M.J.1    Falkowski, P.G.2
  • 8
    • 0037084856 scopus 로고    scopus 로고
    • Using artificial neural networks to model the suitability of coastline for breeding by New Zealand fur seals (Arctocephalus forsten)
    • Bradshaw C.J.A., Davis L.S., Purvis M., Zhou Q., and Benwell G.L. Using artificial neural networks to model the suitability of coastline for breeding by New Zealand fur seals (Arctocephalus forsten). Ecological Modelling 148 (2002) 111-131
    • (2002) Ecological Modelling , vol.148 , pp. 111-131
    • Bradshaw, C.J.A.1    Davis, L.S.2    Purvis, M.3    Zhou, Q.4    Benwell, G.L.5
  • 10
    • 0029664143 scopus 로고    scopus 로고
    • Artificial neural network versus multiple linear regression: Predicting P:B ratios from empirical data
    • Brey T., Jarre-Teichmann A., and Borlich O. Artificial neural network versus multiple linear regression: Predicting P:B ratios from empirical data. Marine Ecology Progress Series 140 (1996) 251-256
    • (1996) Marine Ecology Progress Series , vol.140 , pp. 251-256
    • Brey, T.1    Jarre-Teichmann, A.2    Borlich, O.3
  • 11
    • 0030426363 scopus 로고    scopus 로고
    • Patternizing communities by using an artificial neural network
    • Chon T.-S., Park Y.S., Moon K.H., and Cha E.Y. Patternizing communities by using an artificial neural network. Ecological Modelling 90 (1996) 69-78
    • (1996) Ecological Modelling , vol.90 , pp. 69-78
    • Chon, T.-S.1    Park, Y.S.2    Moon, K.H.3    Cha, E.Y.4
  • 13
    • 0002233946 scopus 로고
    • Discussions of the possible use of neural network algorithms in ecological modelling
    • Colasanti R.L. Discussions of the possible use of neural network algorithms in ecological modelling. Binary 3 (1991) 13-15
    • (1991) Binary , vol.3 , pp. 13-15
    • Colasanti, R.L.1
  • 14
    • 0002683140 scopus 로고
    • Significance of biomass and light availability to phytoplankton productivity in San Francisco Bay
    • Cole B.E., and Cloern J.E. Significance of biomass and light availability to phytoplankton productivity in San Francisco Bay. Marine Ecology Progress Series 17 (1984) 15-24
    • (1984) Marine Ecology Progress Series , vol.17 , pp. 15-24
    • Cole, B.E.1    Cloern, J.E.2
  • 15
    • 0000464460 scopus 로고
    • An empirical model for estimating phytoplankton productivity in estuaries
    • Cole B.E., and Cloern J.E. An empirical model for estimating phytoplankton productivity in estuaries. Marine Ecology Progress Series 36 (1987) 299-305
    • (1987) Marine Ecology Progress Series , vol.36 , pp. 299-305
    • Cole, B.E.1    Cloern, J.E.2
  • 16
    • 0344286516 scopus 로고    scopus 로고
    • Real time wave forecasting using neural networks
    • Deo M.C., and Sridhar Naidu C. Real time wave forecasting using neural networks. Ocean Engineering 26 (1999) 191-203
    • (1999) Ocean Engineering , vol.26 , pp. 191-203
    • Deo, M.C.1    Sridhar Naidu, C.2
  • 18
    • 0002206019 scopus 로고
    • Use of some sensitivity criteria for choosing networks with good generalization ability
    • Dimopoulos I., Bourret P., and Lek S. Use of some sensitivity criteria for choosing networks with good generalization ability. Neural Processing Letters 2 (1995) 1-4
    • (1995) Neural Processing Letters , vol.2 , pp. 1-4
    • Dimopoulos, I.1    Bourret, P.2    Lek, S.3
  • 19
    • 0033578441 scopus 로고    scopus 로고
    • Neural network models to study relationships between lead concentration in grasses and permanent urban descriptors in Athens city (Greece)
    • Dimopoulos I., Chronopoulos J., Chronopoulou Sereli A., and Lek S. Neural network models to study relationships between lead concentration in grasses and permanent urban descriptors in Athens city (Greece). Ecological Modelling 120 2-3 (1999) 157-165
    • (1999) Ecological Modelling , vol.120 , Issue.2-3 , pp. 157-165
    • Dimopoulos, I.1    Chronopoulos, J.2    Chronopoulou Sereli, A.3    Lek, S.4
  • 20
    • 0028973870 scopus 로고
    • The potential for computer-aided identification in biodiversity research
    • Edwards M., and Morse D.R. The potential for computer-aided identification in biodiversity research. Trends in Ecological Evolution 10 4 (1995) 153-158
    • (1995) Trends in Ecological Evolution , vol.10 , Issue.4 , pp. 153-158
    • Edwards, M.1    Morse, D.R.2
  • 21
    • 0002726394 scopus 로고
    • Estimating ocean primary produc-tion from satellite chlorophyll Introduction to regional differences and statistics for the Southern California Bight
    • Eppley R.W., Stewart E., Abbott M.R., and Heyman U. Estimating ocean primary produc-tion from satellite chlorophyll Introduction to regional differences and statistics for the Southern California Bight. Journal of Plankton Research 7 (1985) 57-70
    • (1985) Journal of Plankton Research , vol.7 , pp. 57-70
    • Eppley, R.W.1    Stewart, E.2    Abbott, M.R.3    Heyman, U.4
  • 22
    • 0002618854 scopus 로고    scopus 로고
    • An introduction to machine learning methods
    • A.H. F. (Ed), Kluwer Publishers, Boston, Dordrecth, London
    • Fielding A.H. An introduction to machine learning methods. In: A.H. F. (Ed). Machine Learning Methods for Ecological Applications (1999), Kluwer Publishers, Boston, Dordrecth, London 1-35
    • (1999) Machine Learning Methods for Ecological Applications , pp. 1-35
    • Fielding, A.H.1
  • 23
    • 0001867238 scopus 로고
    • Interpreting neural network connection weights
    • Garson G.D. Interpreting neural network connection weights. Artificial Intelligence Expert 6 (1991) 47-51.
    • (1991) Artificial Intelligence Expert , vol.6
    • Garson, G.D.1
  • 24
    • 0035673991 scopus 로고    scopus 로고
    • A comparison of self-organizing map algorithm and some con-ventional statistical methods for ecological community ordination
    • Giraudel J.L., and Lek S. A comparison of self-organizing map algorithm and some con-ventional statistical methods for ecological community ordination. Ecological Modelling 146 (2001) 329-339.
    • (2001) Ecological Modelling , vol.146
    • Giraudel, J.L.1    Lek, S.2
  • 26
    • 0344052657 scopus 로고    scopus 로고
    • Energy availability and habitat heterogeneity predict global riverine fish diversity
    • Guégan J.F., Lek S., and Oberdorff T. Energy availability and habitat heterogeneity predict global riverine fish diversity. Nature 391 (1998) 382-384
    • (1998) Nature , vol.391 , pp. 382-384
    • Guégan, J.F.1    Lek, S.2    Oberdorff, T.3
  • 27
    • 0041018985 scopus 로고
    • Inference of a rule by a neural network with thermal noise
    • Györgyi G. Inference of a rule by a neural network with thermal noise. Physical Review Letters 64 (1990) 2957-2960
    • (1990) Physical Review Letters , vol.64 , pp. 2957-2960
    • Györgyi, G.1
  • 28
    • 6244239866 scopus 로고
    • Determining functional relationships from trained neural networks
    • Hammitt A.M., and Bartlett E.B. Determining functional relationships from trained neural networks. Mathematical and Computer Modelling 22 (1995) 83-103
    • (1995) Mathematical and Computer Modelling , vol.22 , pp. 83-103
    • Hammitt, A.M.1    Bartlett, E.B.2
  • 29
    • 0036709380 scopus 로고    scopus 로고
    • Toward a predictive understanding of primary productivity in a temperate, partially stratified estuary
    • Harding L.W.Jr., Mallonee M.E., and Perry E.S. Toward a predictive understanding of primary productivity in a temperate, partially stratified estuary. Estuarine, Coastal and Shelf Science 55 (2002) 437-463
    • (2002) Estuarine, Coastal and Shelf Science , vol.55 , pp. 437-463
    • Harding, L.W.Jr.1    Mallonee, M.E.2    Perry, E.S.3
  • 31
    • 0035669958 scopus 로고    scopus 로고
    • Predictive modelling of macroinvertebrate assemblages for stream habitat assessments in Queensland (Australia)
    • Hoang H., Recknagel F., Marshall J., and Choy S. Predictive modelling of macroinvertebrate assemblages for stream habitat assessments in Queensland (Australia). Ecological Modelling 195 (2001) 195-206
    • (2001) Ecological Modelling , vol.195 , pp. 195-206
    • Hoang, H.1    Recknagel, F.2    Marshall, J.3    Choy, S.4
  • 32
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M., and White H. Multilayer feedforward networks are universal approximators. Neural Networks 2 (1989) 359-366
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 33
    • 0036027497 scopus 로고    scopus 로고
    • Neural network modeling of salinity variation in Apalachicola River
    • Huang W., and Foo S. Neural network modeling of salinity variation in Apalachicola River. Water Research 36 (2002) 356-362
    • (2002) Water Research , vol.36 , pp. 356-362
    • Huang, W.1    Foo, S.2
  • 34
    • 0035669752 scopus 로고    scopus 로고
    • Prediction and elucidation of phytoplankton dynamics in the Nakdong River (Korea) by means of a recurrent artificial neural network
    • Jeong K.-S., Joo G.-J., Kim H.-W., Ha K., and Recknagel F. Prediction and elucidation of phytoplankton dynamics in the Nakdong River (Korea) by means of a recurrent artificial neural network. Ecological Modelling 146 (2001) 115-129
    • (2001) Ecological Modelling , vol.146 , pp. 115-129
    • Jeong, K.-S.1    Joo, G.-J.2    Kim, H.-W.3    Ha, K.4    Recknagel, F.5
  • 35
    • 0344326232 scopus 로고    scopus 로고
    • Neural network model for estimating sea surface chlorophyll and sediments from Thematic Mapper imagery
    • Keiner L.E., and Yan X.-H. Neural network model for estimating sea surface chlorophyll and sediments from Thematic Mapper imagery. Remote Sensing in the Environment 66 (1998) 53-165
    • (1998) Remote Sensing in the Environment , vol.66 , pp. 53-165
    • Keiner, L.E.1    Yan, X.-H.2
  • 38
    • 0037128648 scopus 로고    scopus 로고
    • Application of artificial neural networks in tide-forecasting
    • Lee T.L., and Jeng D.S. Application of artificial neural networks in tide-forecasting. Ocean Engineering 29 (2002) 1003-1022
    • (2002) Ocean Engineering , vol.29 , pp. 1003-1022
    • Lee, T.L.1    Jeng, D.S.2
  • 40
    • 0029661447 scopus 로고    scopus 로고
    • Role of some environmental variables in trout abundance models using neural networks
    • Lek S., Belaud A., Baran P., Dimopoulos I., and Delacoste M. Role of some environmental variables in trout abundance models using neural networks. Aquatic Living Research 9 (1996) 23-29
    • (1996) Aquatic Living Research , vol.9 , pp. 23-29
    • Lek, S.1    Belaud, A.2    Baran, P.3    Dimopoulos, I.4    Delacoste, M.5
  • 41
    • 0344604541 scopus 로고    scopus 로고
    • Artificial neural networks as a tool in ecological modelling
    • Lek S., and Guégan J.E. Artificial neural networks as a tool in ecological modelling. An introduction. Ecological Modelling 120 (1999) 65-73
    • (1999) An introduction. Ecological Modelling , vol.120 , pp. 65-73
    • Lek, S.1    Guégan, J.E.2
  • 42
    • 0033578449 scopus 로고    scopus 로고
    • Comparing discriminant analysis, neural networks and logistic regression for predicting species distributions: A case study with a Himalayan river bird
    • Manel S., Dias J.-M., and Ormerod S.J. Comparing discriminant analysis, neural networks and logistic regression for predicting species distributions: A case study with a Himalayan river bird. Ecological Modelling 120 (1999) 337-347
    • (1999) Ecological Modelling , vol.120 , pp. 337-347
    • Manel, S.1    Dias, J.-M.2    Ormerod, S.J.3
  • 43
    • 0344689980 scopus 로고    scopus 로고
    • Prediction model for occurrence of impact wave force
    • Mase H., and Kitano T. Prediction model for occurrence of impact wave force. Ocean Engi-neering 26 (1999) 949-961
    • (1999) Ocean Engi-neering , vol.26 , pp. 949-961
    • Mase, H.1    Kitano, T.2
  • 45
    • 0036793562 scopus 로고    scopus 로고
    • A comparison of statistical approaches for modelling fish species distributions
    • Olden J.D., and Jackson D.A. A comparison of statistical approaches for modelling fish species distributions. Freshwater Biology 47 (2002) 1976-1995
    • (2002) Freshwater Biology , vol.47 , pp. 1976-1995
    • Olden, J.D.1    Jackson, D.A.2
  • 46
    • 0036721959 scopus 로고    scopus 로고
    • SPECIES: A spatial evaluation of climate impact on the envelope of species
    • Pearson R.G., Dawson T.P., Berry P.M., and Harrison P.A. SPECIES: A spatial evaluation of climate impact on the envelope of species. Ecological Modelling 154 (2002) 289-300
    • (2002) Ecological Modelling , vol.154 , pp. 289-300
    • Pearson, R.G.1    Dawson, T.P.2    Berry, P.M.3    Harrison, P.A.4
  • 47
    • 0000442791 scopus 로고
    • Generalization of backpropagation to recurrent neural networks
    • Pineda F. Generalization of backpropagation to recurrent neural networks. Physical Review Letters 19 59 (1987) 2229-2232
    • (1987) Physical Review Letters , vol.19 , Issue.59 , pp. 2229-2232
    • Pineda, F.1
  • 48
    • 0035676249 scopus 로고    scopus 로고
    • Applications of machine learning to ecological modeling
    • Recknagel F. Applications of machine learning to ecological modeling. Ecological Modelling 146 (2001) 303-310
    • (2001) Ecological Modelling , vol.146 , pp. 303-310
    • Recknagel, F.1
  • 49
    • 0030619529 scopus 로고    scopus 로고
    • Artificial neural network ap-proach for modelling and prediction of algal blooms
    • Recknagel F., French M., Harkonen P., and Yabunaka K.I. Artificial neural network ap-proach for modelling and prediction of algal blooms. Ecological Modelling 96 (1997) 11-28
    • (1997) Ecological Modelling , vol.96 , pp. 11-28
    • Recknagel, F.1    French, M.2    Harkonen, P.3    Yabunaka, K.I.4
  • 50
    • 0001491662 scopus 로고    scopus 로고
    • Modelling and prediction of phyto-and Zooplankton dynamics in Lake Kasumigaura by artificial neural networks
    • Recknagel F., Fukushima T., Hanazato T., Takamura N., and Wilson H. Modelling and prediction of phyto-and Zooplankton dynamics in Lake Kasumigaura by artificial neural networks. Lakes & Reservoirs 3 (1998) 123-133
    • (1998) Lakes & Reservoirs , vol.3 , pp. 123-133
    • Recknagel, F.1    Fukushima, T.2    Hanazato, T.3    Takamura, N.4    Wilson, H.5
  • 51
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart D.E., Hinton G.E., and Williams G.E. Learning representations by back-propagating errors. Nature 323 (1986) 533-536
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, G.E.3
  • 52
    • 0032157949 scopus 로고    scopus 로고
    • Coastal bathymetry from hyperspectral observations of water radiance
    • Sandidge J.C., and Holyer R.J. Coastal bathymetry from hyperspectral observations of water radiance. Remote Sensing of the Environment 65 (1998) 341-352
    • (1998) Remote Sensing of the Environment , vol.65 , pp. 341-352
    • Sandidge, J.C.1    Holyer, R.J.2
  • 53
    • 0029662837 scopus 로고    scopus 로고
    • Artificial neural networks as empirical models of phytoplankton production
    • Scardi M. Artificial neural networks as empirical models of phytoplankton production. Ma-rine Ecology Progress Series 139 (1996) 289-299
    • (1996) Ma-rine Ecology Progress Series , vol.139 , pp. 289-299
    • Scardi, M.1
  • 54
    • 0007685791 scopus 로고    scopus 로고
    • Neuronal network models of phytoplankton primary production
    • S. L., and J.-F. G. (Eds), Springer-Verlag, Berlin/Heidelberg
    • Scardi M. Neuronal network models of phytoplankton primary production. In: S. L., and J.-F. G. (Eds). Artificial Neuronal Networks: Application To Ecology And Evolution (2000), Springer-Verlag, Berlin/Heidelberg 115-129
    • (2000) Artificial Neuronal Networks: Application To Ecology And Evolution , pp. 115-129
    • Scardi, M.1
  • 55
    • 0035673819 scopus 로고    scopus 로고
    • Advances in neural network modeling of phytoplankton primary production
    • Scardi M. Advances in neural network modeling of phytoplankton primary production. Ecological Modelling 146 (2001) 33-35
    • (2001) Ecological Modelling , vol.146 , pp. 33-35
    • Scardi, M.1
  • 56
    • 0033578446 scopus 로고    scopus 로고
    • Developing an empirical model of phytoplankton primary production: A neural network case study
    • Scardi M., and Harding L.W.Jr. Developing an empirical model of phytoplankton primary production: A neural network case study. Ecological Modelling 120 (1999) 213-223
    • (1999) Ecological Modelling , vol.120 , pp. 213-223
    • Scardi, M.1    Harding, L.W.Jr.2
  • 57
    • 77956732182 scopus 로고    scopus 로고
    • Scardi, M., Lek, S., Park., Y.S., Verdonschot, P., and J0rgensen, S.E., in press. Improving neural network models by means of theoretical ecological knowledge. Ecological Modelling, in press.
    • Scardi, M., Lek, S., Park., Y.S., Verdonschot, P., and J0rgensen, S.E., in press. Improving neural network models by means of theoretical ecological knowledge. Ecological Modelling, in press.
  • 58
    • 0029666889 scopus 로고    scopus 로고
    • Predicting grassland community changes with an artificial neural network model
    • Sen S.T., and Smeins F.E. Predicting grassland community changes with an artificial neural network model. Ecological Modelling 84 (1996) 91-97
    • (1996) Ecological Modelling , vol.84 , pp. 91-97
    • Sen, S.T.1    Smeins, F.E.2
  • 59
    • 84986739464 scopus 로고
    • The bio-optical state of ocean waters and remote sensing
    • Smith R.C., and Baker K.S. The bio-optical state of ocean waters and remote sensing. Limnology and Oceanography 23 2 (1978) 247-259
    • (1978) Limnology and Oceanography , vol.23 , Issue.2 , pp. 247-259
    • Smith, R.C.1    Baker, K.S.2
  • 60
    • 0036645691 scopus 로고    scopus 로고
    • Self-organizing feature maps predicting sea levels
    • Ultsch A., and Röske F. Self-organizing feature maps predicting sea levels. Information Sciences 144 (2002) 91-125
    • (2002) Information Sciences , vol.144 , pp. 91-125
    • Ultsch, A.1    Röske, F.2
  • 61
    • 0035677369 scopus 로고    scopus 로고
    • Predicting eutrophication effects in the Burrinjuck Reservoir (Australia) by means of the deterministic model SALMO and the recurrent neural network model ANN
    • Walter M., Recknagel F., Carpenter C., and Bormans M. Predicting eutrophication effects in the Burrinjuck Reservoir (Australia) by means of the deterministic model SALMO and the recurrent neural network model ANN. Ecological Modelling 146 (2001) 97-113
    • (2001) Ecological Modelling , vol.146 , pp. 97-113
    • Walter, M.1    Recknagel, F.2    Carpenter, C.3    Bormans, M.4
  • 62
    • 0030725850 scopus 로고    scopus 로고
    • Novel application of a back-propagation artificial neural network model formulated to predict algal blooms
    • Yabunaka K., Masaaki H., and Murakami A. Novel application of a back-propagation artificial neural network model formulated to predict algal blooms. Water Science Technology 36 5 (1997) 89-97
    • (1997) Water Science Technology , vol.36 , Issue.5 , pp. 89-97
    • Yabunaka, K.1    Masaaki, H.2    Murakami, A.3
  • 63
    • 0036330344 scopus 로고    scopus 로고
    • Application of an empirical neural network to surface water quality estimation in the Gulf of Finland using combined optical data and microwave data
    • Zhang Y., Pulliainen J., Koponen S., and Hallikainen M. Application of an empirical neural network to surface water quality estimation in the Gulf of Finland using combined optical data and microwave data. Remote Sensing of the Environment 81 (2002) 327-336
    • (2002) Remote Sensing of the Environment , vol.81 , pp. 327-336
    • Zhang, Y.1    Pulliainen, J.2    Koponen, S.3    Hallikainen, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.