메뉴 건너뛰기




Volumn 41, Issue 12 PART II, 2003, Pages 2947-2951

Retrieval of oceanic chlorophyll concentration using support vector machines

Author keywords

Neural network; Ocean color remote sensing; Oceanic chlorophyll; Support vector machine (SVM)

Indexed keywords

ALGORITHMS; CHLOROPHYLL; COMPUTER SOFTWARE; LEARNING SYSTEMS; NEURAL NETWORKS; OCEANOGRAPHY; QUADRATIC PROGRAMMING; REFLECTION; REGRESSION ANALYSIS;

EID: 0442311258     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2003.819870     Document Type: Letter
Times cited : (83)

References (14)
  • 1
    • 0344326232 scopus 로고    scopus 로고
    • A neural network model for estimating sea surface chlorophyll and sediments from thematic mapper imagery
    • L. E. Keiner and X. H. Yan, "A neural network model for estimating sea surface chlorophyll and sediments from thematic mapper imagery," Remote Sens. Environ., vol. 66, pp. 153-165, 1998.
    • (1998) Remote Sens. Environ. , vol.66 , pp. 153-165
    • Keiner, L.E.1    Yan, X.H.2
  • 2
    • 0033540298 scopus 로고    scopus 로고
    • Estimating oceanic chlorophyll concentrations with neural networks
    • L. E. Keiner and C. W. Brown, "Estimating oceanic chlorophyll concentrations with neural networks," Int. J. Remote Sens., vol. 20, no. 1, pp. 189-194, 1999.
    • (1999) Int. J. Remote Sens. , vol.20 , Issue.1 , pp. 189-194
    • Keiner, L.E.1    Brown, C.W.2
  • 3
    • 0033563923 scopus 로고    scopus 로고
    • Neural network for estimating of an inverse model-operational derivation of case II water properties from MERIS data
    • H. Schiller and R. Doerffer, "Neural network for estimating of an inverse model-operational derivation of case II water properties from MERIS data," Int. J. Remote Sens., vol. 20, no. 9, pp. 1735-1746, 1999.
    • (1999) Int. J. Remote Sens. , vol.20 , Issue.9 , pp. 1735-1746
    • Schiller, H.1    Doerffer, R.2
  • 4
    • 0033563954 scopus 로고    scopus 로고
    • The use of neural networks for the estimation of oceanic constituents based on MERIS instrument
    • D. Buckton and E. O'Mongain, "The use of neural networks for the estimation of oceanic constituents based on MERIS instrument," Int. J. Remote Sens., vol. 20, no. 9, pp. 1841-1851, 1999.
    • (1999) Int. J. Remote Sens. , vol.20 , Issue.9 , pp. 1841-1851
    • Buckton, D.1    O'Mongain, E.2
  • 5
    • 33344456632 scopus 로고    scopus 로고
    • A neural network approach to deriving optical properties and depths of shallow waters
    • S. G. Ackleson and J. Campell, Eds. Washington, DC
    • Z. P. Lee, M. R. Zhang, K. L. Carder, and L. O. Hall, "A neural network approach to deriving optical properties and depths of shallow waters," in Proc. Ocean Optics XIV, S. G. Ackleson and J. Campell, Eds. Washington, DC, 1998.
    • (1998) Proc. Ocean Optics XIV
    • Lee, Z.P.1    Zhang, M.R.2    Carder, K.L.3    Hall, L.O.4
  • 6
    • 0003216512 scopus 로고    scopus 로고
    • Application of the neural network to OCTS data
    • S. G. Ackleson and J. Campbell, Eds. Washington, DC
    • A. Tanaka, T. Oishi, M. Kishino, and R. Doerffer, "Application of the neural network to OCTS data," in Proc. Ocean Optics XIV, S. G. Ackleson and J. Campell, Eds. Washington, DC, 1998.
    • (1998) Proc. Ocean Optics XIV
    • Tanaka, A.1    Oishi, T.2    Kishino, M.3    Doerffer, R.4
  • 7
    • 0033670138 scopus 로고    scopus 로고
    • Artificial neural networks for modeling the transfer function between marine reflectance and phytoplankton pigment concentration
    • L. Gross, S. Thiria, R. Frouin, and B. G. Mitchell, "Artificial neural networks for modeling the transfer function between marine reflectance and phytoplankton pigment concentration," J. Geophys. Res., vol. 105, no. C2, pp. 3483-3495, 2000.
    • (2000) J. Geophys. Res. , vol.105 , Issue.C2 , pp. 3483-3495
    • Gross, L.1    Thiria, S.2    Frouin, R.3    Mitchell, B.G.4
  • 8
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • Sept.
    • V. N. Vapnik, "An overview of statistical learning theory," IEEE Trans. Neural Networks, vol. 10, pp. 988-1000, Sept. 1999.
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 988-1000
    • Vapnik, V.N.1
  • 10
    • 0042669930 scopus 로고    scopus 로고
    • Merger of ocean color data from multiple satellite missions within the SIMBIOS project
    • E. J. Kwiatkowska and G. S. Fargion, "Merger of ocean color data from multiple satellite missions within the SIMBIOS project," in Proc. SPIE, vol. 4892, 2002, pp. 168-182.
    • (2002) Proc. SPIE , vol.4892 , pp. 168-182
    • Kwiatkowska, E.J.1    Fargion, G.S.2
  • 13
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of SVM's using sequential minimal optimization
    • B. Sch-Polkopf, C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press
    • J. Platt, "Fast training of SVM's using sequential minimal optimization," in Advances in Kernel Methods: Support Vector Learning, B. Sch-Polkopf, C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press, 1999.
    • (1999) Advances in Kernel Methods: Support Vector Learning
    • Platt, J.1
  • 14
    • 0004094721 scopus 로고    scopus 로고
    • Learning with kernels
    • Ph.D. thesis, GMD, Birlinghoven, Germany
    • A. J. Smola, "Learning with kernels," Ph.D. thesis, GMD, Birlinghoven, Germany, 1998.
    • (1998)
    • Smola, A.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.